A128583 Expansion of chi(x) * psi(x^2) * phi(-x^6) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 3, 1, 1, 1, 2, 2, 1, 2, 0, 1, 2, 1, 0, 1, 2, 3, 0, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 1, 0, 1, 4, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 0, 1, 2, 3, 1, 0, 1, 0, 0, 2, 2, 1, 1, 2, 2, 1, 1, 2, 0, 1, 2, 0, 1, 1, 6, 1, 1, 1, 0, 2, 1
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + x^6 + x^7 + x^8 + 3*x^10 + ... G.f. = q^5 + q^29 + q^53 + 2*q^77 + q^101 + 2*q^125 + q^149 + q^173 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^4] QPochhammer[ x^6]^2 / (QPochhammer[ x] QPochhammer[ x^12] ), {x, 0, n}]; a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] EllipticTheta[ 4, 0, x^6] EllipticTheta[ 2, 0, x] / (2 x^(1/4)), {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x + A) * eta(x^12 + A)), n))};
Formula
Expansion of q^(-5/24) * eta(q^2) * eta(q^4) * eta(q^6)^2 / (eta(q) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 1, 0, 1, -1, 1, -2, 1, -1, 1, 0, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 6^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A229723.
a(n) = A128582(4*n) = A259895(3*n) = A260118(4*n). 2 * a(n) = A190615(12*n + 2). - Michael Somos, Nov 15 2015
-2 * a(n) = A128580(12*n + 2). - Michael Somos, Dec 22 2016
Comments