A128582 Expansion of f(x^4, x^12) * f(x, x^5) in powers of x where f(, ) is Ramanujan's general theta function.
1, 1, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 3, 1, 0, 0, 1, 3, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 0, 1, 2, 0
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^4 + 2*x^5 + x^8 + x^9 + 2*x^12 + x^13 + x^16 + x^17 + 2*x^20 + ... G.f. = q^5 + q^11 + q^29 + 2*q^35 + q^53 + q^59 + 2*q^77 + q^83 + q^101 + q^107 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, With[{m = 6 n + 5}, -1/2 DivisorSum[ m, KroneckerSymbol[ -12, #] KroneckerSymbol[ 2, m/#] &]]]; (* Michael Somos, Nov 15 2015 *) a[ n_] := SeriesCoefficient[ 2^(-3/2) x^(-7/8) EllipticTheta[ 2, Pi/4, x^(3/2)] EllipticTheta[ 2, Pi/4, x]^2 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 15 2015 *)
-
PARI
{a(n) = if( n<0, 0, n = 6*n + 5; -1/2 * sumdiv( n, d, kronecker( -12, d) * kronecker( 2, n/d)))};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^8 + A)^2 * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A)^2 * eta(x^6 + A)), n))};
Formula
Expansion of psi(x) * psi(-x^3) / chi(-x^4)^2 in powers of x where psi(), chi() are Ramanujan theta functions.
Expansion of q^(-5/6) * eta(q^2)^2 * eta(q^3) * eta(q^8)^2 * eta(q^12) / (eta(q) * eta(q^4)^2 * eta(q^6)) in powers of q.
Euler transform of period 24 sequence [ 1, -1, 0, 1, 1, -1, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, -1, 1, 1, 0, -1, 1, -2, ...].
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(2*k)) * (1 + x^(4*k))^2 * (1 - x^(6*k - 3)) * (1 - x^(12*k)).
Comments