cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A190615 Expansion of f(x^2) * f(x^3) / (chi(x) * chi(x^6)) in powers of x where f(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, -2, 1, -2, 0, -2, 0, 0, 2, 0, 3, -1, 2, -2, 2, -4, 0, 0, 0, 0, 2, 0, 3, 0, 2, -4, 0, -2, 0, -2, 0, 0, 0, 0, 2, -3, 4, -2, 1, -2, 0, -2, 0, 0, 2, 0, 2, -2, 2, -2, 4, -2, 0, 0, 0, 0, 0, 0, 3, 0, 4, -2, 0, -2, 0, -2, 0, 0, 0, 0, 4, -3, 2, -2, 0, -4, 0
Offset: 0

Views

Author

Michael Somos, May 14 2011

Keywords

Comments

Number 63 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + x^4 - 2*x^5 - 2*x^7 + 2*x^10 + 3*x^12 - x^13 + ...
G.f. = q - q^3 + 2*q^5 - 2*q^7 + q^9 - 2*q^11 - 2*q^15 + 2*q^21 + 3*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, KroneckerSymbol[ -6, #] &]]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] EllipticTheta[ 2, 0, x^2] - EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^6]) / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2] QPochhammer[ -x^3] / (QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^12]), {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^4 * eta(x^6 + A)^4 * eta(x^24 + A) / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A)^3), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor(2*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, p%24 < 12, (e+1) * if( p%24 < 6, 1, (-1)^e), (1 + (-1)^e) / 2 )))};

Formula

Expansion of phi(-x^3) * psi(x^4) - x * phi(-x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q) * eta(q^4)^4 * eta(q^6)^4 * eta(q^24) / (eta(q^2)^3 * eta(q^3) * eta(q^8) * eta(q^12)^3) in powers of q.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 24), b(p^e) = (-1)^e * (e+1) if p == 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
Euler transform of period 24 sequence [ -1, 2, 0, -2, -1, -1, -1, -1, 0, 2, -1, -2, -1, 2, 0, -1, -1, -1, -1, -2, 0, 2, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 96^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker( 6, k) * q^k / (1 + q^(2*k)) = Sum_{k>=0} a(k) * q^(2*k + 1).
G.f.: Product_{k>0} (1 + (-x)^k) * (1 - (-x^2)^k) * (1 - (-x^3)^k) * (1 + (-x^6)^k).
a(n) = (-1)^n * A129402(n). a(3*n + 1) = -a(n). a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11) = 0.
a(12*n) = A113700(n). a(12*n + 2) = 2 * A128583(n). a(12*n + 5) = -2 * A128591(n). - Michael Somos, Jun 09 2015
a(n) = (-1)^floor(n/2) * A128580(n) = (-1)^(n + floor(n/2)) * A134177(n). - Michael Somos, Jul 29 2015
a(3*n) = A260110(n). a(3*n + 2) = 2 * A260118(n). - Michael Somos, Jul 29 2015
a(4*n) = A260308(n). a(4*n + 1) = - A257920(n). a(4*n + 2) = 2 * A259895(n). a(4*n + 3) = -2 * A259896(n). - Michael Somos, Jul 29 2015
a(12*n + 3) = -2 * A260089(n). - Michael Somos, Jul 29 2015

A128583 Expansion of chi(x) * psi(x^2) * phi(-x^6) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 3, 1, 1, 1, 2, 2, 1, 2, 0, 1, 2, 1, 0, 1, 2, 3, 0, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 1, 0, 1, 4, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 0, 1, 2, 3, 1, 0, 1, 0, 0, 2, 2, 1, 1, 2, 2, 1, 1, 2, 0, 1, 2, 0, 1, 1, 6, 1, 1, 1, 0, 2, 1
Offset: 0

Views

Author

Michael Somos, Mar 11 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + x^6 + x^7 + x^8 + 3*x^10 + ...
G.f. = q^5 + q^29 + q^53 + 2*q^77 + q^101 + 2*q^125 + q^149 + q^173 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^4] QPochhammer[ x^6]^2 / (QPochhammer[ x] QPochhammer[ x^12] ), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] EllipticTheta[ 4, 0, x^6] EllipticTheta[ 2, 0, x] / (2 x^(1/4)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x + A) * eta(x^12 + A)), n))};

Formula

Expansion of q^(-5/24) * eta(q^2) * eta(q^4) * eta(q^6)^2 / (eta(q) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 1, 0, 1, -1, 1, -2, 1, -1, 1, 0, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 6^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A229723.
a(n) = A128582(4*n) = A259895(3*n) = A260118(4*n). 2 * a(n) = A190615(12*n + 2). - Michael Somos, Nov 15 2015
-2 * a(n) = A128580(12*n + 2). - Michael Somos, Dec 22 2016

A128591 Expansion of f(x, x^5) * f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 0, 0, 1, 2, 2, 1, 1, 1, 1, 2, 3, 1, 1, 0, 2, 1, 1, 2, 0, 2, 0, 2, 1, 0, 4, 2, 0, 1, 1, 2, 1, 2, 2, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 2, 2, 2, 0, 1, 1, 3, 1, 1, 0, 1, 4, 1, 2, 1, 0, 4, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 2, 3
Offset: 0

Views

Author

Michael Somos, Mar 11 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + x^9 + x^10 + 3*x^11 + ...
G.f. = q^11 + 2*q^35 + q^59 + q^83 + q^107 + q^131 + 2*q^155 + q^179 + 2*q^203 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2^(-3/2) x^(-1/2) QPochhammer[ -x, x^2] EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(3/2)], {x, 0, n}]; (* Michael Somos, Nov 15 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff(  eta(x^2 + A)^4 * eta(x^3 + A) * eta(x^12 + A)  / (eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of chi(x) * psi(x) * psi(-x^3) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Nov 15 2015
Expansion of q^(-11/24) * eta(q^2)^4 * eta(q^3) * eta(q^12) / (eta(q)^2 * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, -2, 1, -1, 2, -2, 2, -1, 1, -2, 2, -2, ...].
a(n) = A128582(4*n + 1).
2 * a(n) = A257920(3*n + 1). - a(n) = A260118(4*n + 1). 2 * a(n) = A257921(6*n + 2). -2 * a(n) = A128580(12*n + 5) = A190615(12*n + 5). - Michael Somos, Nov 15 2015
Showing 1-3 of 3 results.