cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A129402 Expansion of phi(x^3) * psi(x^4) + x * phi(x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 0, 2, 0, 0, 2, 0, 3, 1, 2, 2, 2, 4, 0, 0, 0, 0, 2, 0, 3, 0, 2, 4, 0, 2, 0, 2, 0, 0, 0, 0, 2, 3, 4, 2, 1, 2, 0, 2, 0, 0, 2, 0, 2, 2, 2, 2, 4, 2, 0, 0, 0, 0, 0, 0, 3, 0, 4, 2, 0, 2, 0, 2, 0, 0, 0, 0, 4, 3, 2, 2, 0, 4, 0, 2, 0, 0, 4, 0, 1, 0, 2
Offset: 0

Views

Author

Michael Somos, Apr 13 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f = 1 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^7 + 2*x^10 + 3*x^12 + x^13 + 2*x^14 + ...
G.f. = q + q^3 + 2*q^5 + 2*q^7 + q^9 + 2*q^11 + 2*q^15 + 2*q^21 + 3*q^25 + q^27 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 83, Eq. (32.57).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, KroneckerSymbol[ -6, #] &]]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2] QPochhammer[ x^3] QPochhammer[ -x, x] QPochhammer[ x^6, -x^6], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n+1; sumdiv( n, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) * eta(x^4 + A)^3 * eta(x^6 + A) * eta(x^24 + A) / (eta(x + A) * eta(x^8 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of f(x^2) * f(-x^3) / (chi(-x) * chi(x^6)) in powers of x where f(), chi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q^3) * eta(x^4)^3 * eta(q^6) * eta(q^24) / (eta(q) * eta(q^8) * eta(q^12)^12) in powers of q.
Euler transform of period 24 sequence [ 1, 1, 0, -2, 1, -1, 1, -1, 0, 1, 1, -2, 1, 1, 0, -1, 1, -1, 1, -2, 0, 1, 1, -2, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1, b(p^e) = e+1 if p == 1, 5, 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 24^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A190611.
a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11) = 0. a(3*n + 1) = a(n).
a(n) = A000377(2*n + 1). a(3*n + 2) = 2 * A128582(n). a(12*n) = A113780(n).
a(n) = (-1)^n * A190615(n) = (-1)^floor( (n+1) / 2) * A128580(n). - Michael Somos, Nov 11 2015
a(2*n) = A261118(n). a(2*n + 1) = A261119(n). a(3*n) = A261115(n). - Michael Somos, Nov 11 2015
a(4*n) = A260308(n). a(4*n + 1) = A257920(n). a(4*n + 2) = 2 * A259895(n). - Michael Somos, Nov 11 2015
a(n) = - A261122(4*n + 2). - Michael Somos, Nov 11 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.282549... . - Amiram Eldar, Dec 28 2023

A190615 Expansion of f(x^2) * f(x^3) / (chi(x) * chi(x^6)) in powers of x where f(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, -2, 1, -2, 0, -2, 0, 0, 2, 0, 3, -1, 2, -2, 2, -4, 0, 0, 0, 0, 2, 0, 3, 0, 2, -4, 0, -2, 0, -2, 0, 0, 0, 0, 2, -3, 4, -2, 1, -2, 0, -2, 0, 0, 2, 0, 2, -2, 2, -2, 4, -2, 0, 0, 0, 0, 0, 0, 3, 0, 4, -2, 0, -2, 0, -2, 0, 0, 0, 0, 4, -3, 2, -2, 0, -4, 0
Offset: 0

Views

Author

Michael Somos, May 14 2011

Keywords

Comments

Number 63 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + x^4 - 2*x^5 - 2*x^7 + 2*x^10 + 3*x^12 - x^13 + ...
G.f. = q - q^3 + 2*q^5 - 2*q^7 + q^9 - 2*q^11 - 2*q^15 + 2*q^21 + 3*q^25 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 2 n + 1, KroneckerSymbol[ -6, #] &]]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] EllipticTheta[ 2, 0, x^2] - EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^6]) / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2] QPochhammer[ -x^3] / (QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^12]), {x, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, kronecker( -6, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^4 * eta(x^6 + A)^4 * eta(x^24 + A) / (eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A)^3), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, A = factor(2*n + 1); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, p%24 < 12, (e+1) * if( p%24 < 6, 1, (-1)^e), (1 + (-1)^e) / 2 )))};

Formula

Expansion of phi(-x^3) * psi(x^4) - x * phi(-x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q) * eta(q^4)^4 * eta(q^6)^4 * eta(q^24) / (eta(q^2)^3 * eta(q^3) * eta(q^8) * eta(q^12)^3) in powers of q.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 24), b(p^e) = (-1)^e * (e+1) if p == 7, 11 (mod 24), b(p^e) = (1 + (-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
Euler transform of period 24 sequence [ -1, 2, 0, -2, -1, -1, -1, -1, 0, 2, -1, -2, -1, 2, 0, -1, -1, -1, -1, -2, 0, 2, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 96^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{k>0} Kronecker( 6, k) * q^k / (1 + q^(2*k)) = Sum_{k>=0} a(k) * q^(2*k + 1).
G.f.: Product_{k>0} (1 + (-x)^k) * (1 - (-x^2)^k) * (1 - (-x^3)^k) * (1 + (-x^6)^k).
a(n) = (-1)^n * A129402(n). a(3*n + 1) = -a(n). a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11) = 0.
a(12*n) = A113700(n). a(12*n + 2) = 2 * A128583(n). a(12*n + 5) = -2 * A128591(n). - Michael Somos, Jun 09 2015
a(n) = (-1)^floor(n/2) * A128580(n) = (-1)^(n + floor(n/2)) * A134177(n). - Michael Somos, Jul 29 2015
a(3*n) = A260110(n). a(3*n + 2) = 2 * A260118(n). - Michael Somos, Jul 29 2015
a(4*n) = A260308(n). a(4*n + 1) = - A257920(n). a(4*n + 2) = 2 * A259895(n). a(4*n + 3) = -2 * A259896(n). - Michael Somos, Jul 29 2015
a(12*n + 3) = -2 * A260089(n). - Michael Somos, Jul 29 2015

A128583 Expansion of chi(x) * psi(x^2) * phi(-x^6) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 1, 0, 3, 1, 1, 1, 2, 2, 1, 2, 0, 1, 2, 1, 0, 1, 2, 3, 0, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 1, 0, 1, 4, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 0, 1, 2, 3, 1, 0, 1, 0, 0, 2, 2, 1, 1, 2, 2, 1, 1, 2, 0, 1, 2, 0, 1, 1, 6, 1, 1, 1, 0, 2, 1
Offset: 0

Views

Author

Michael Somos, Mar 11 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + x^6 + x^7 + x^8 + 3*x^10 + ...
G.f. = q^5 + q^29 + q^53 + 2*q^77 + q^101 + 2*q^125 + q^149 + q^173 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^4] QPochhammer[ x^6]^2 / (QPochhammer[ x] QPochhammer[ x^12] ), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] EllipticTheta[ 4, 0, x^6] EllipticTheta[ 2, 0, x] / (2 x^(1/4)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x + A) * eta(x^12 + A)), n))};

Formula

Expansion of q^(-5/24) * eta(q^2) * eta(q^4) * eta(q^6)^2 / (eta(q) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 1, 0, 1, -1, 1, -2, 1, -1, 1, 0, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 6^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A229723.
a(n) = A128582(4*n) = A259895(3*n) = A260118(4*n). 2 * a(n) = A190615(12*n + 2). - Michael Somos, Nov 15 2015
-2 * a(n) = A128580(12*n + 2). - Michael Somos, Dec 22 2016

A259896 Expansion of psi(x) * psi(x^6) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 0, 1, 2, 0, 2, 1, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 07 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of positive odd solutions to equation x^2 + 6*y^2 = 8*n + 7. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + x + x^3 + 2*x^6 + x^7 + x^9 + x^10 + x^12 + x^15 + x^16 + ...
G.f. = q^7 + q^15 + q^31 + 2*q^55 + q^63 + q^79 + q^87 + q^103 + q^127 + ...
		

Crossrefs

Cf. A259895.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^3] / (4 q^(7/8)), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^12 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-7/8) * eta(q^2)^2 * eta(q^12)^2 / (eta(q) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -2, ...].
a(3*n + 1) = A259895(n). a(3*n + 2) = a(9*n + 4) = 0.

A261118 Expansion of psi(x)^2 * psi(-x^3)^2 / (phi(-x^4) * psi(-x^6)) in power of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 1, 0, 0, 2, 3, 2, 2, 0, 0, 2, 3, 2, 0, 0, 0, 0, 2, 4, 1, 0, 0, 2, 2, 2, 4, 0, 0, 0, 3, 4, 0, 0, 0, 0, 4, 2, 0, 0, 0, 4, 1, 2, 2, 0, 0, 2, 2, 2, 0, 0, 0, 0, 4, 0, 3, 0, 0, 2, 2, 6, 2, 0, 0, 2, 4, 2, 0, 0, 0, 0, 1, 2, 2, 0, 0, 2, 2, 2, 2, 0, 0, 0, 2, 4, 0
Offset: 0

Views

Author

Michael Somos, Aug 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^5 + 3*x^6 + 2*x^7 + 2*x^8 + 2*x^11 + 3*x^12 + ...
G.f. = q + 2*q^5 + q^9 + 2*q^21 + 3*q^25 + 2*q^29 + 2*q^33 + 2*q^45 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[(-1)^(-1/8)*q^(-1/4)*(EllipticTheta[2, 0, Sqrt[q]]*EllipticTheta[2, 0, I*Sqrt[q^3]])^2/(8*EllipticTheta[3, 0, -q^4]*EllipticTheta[2, 0, I*q^3]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 04 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A)^2 * eta(x^8 + A) * eta(x^12 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)^3 * eta(x^24 + A)), n))};

Formula

Expansion of f(-x^8) * f(x, x^5)^2 / psi(-x^6) in powers of x where psi(), f() are Ramanujan theta functions.
Expansion of q^(-1/4) * eta(q^2)^4 * eta(q^3)^2 * eta(q^8) * eta(q^12)^3 / (eta(q)^2 * eta(q^4)^2 * eta(q^6)^3 * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 2, -2, 0, 0, 2, -1, 2, -1, 0, -2, 2, -2, 2, -2, 0, -1, 2, -1, 2, 0, 0, -2, 2, -2, ...].
a(n) = (-1)^n * A259668(n) = A129402(2*n) = A190615(2*n) = A192013(4*n) = A000377(4*n + 1) = A129402(6*n + 1).
a(2*n) = A260308(n). a(2*n + 1) = 2 * A259895(n).
Showing 1-5 of 5 results.