A128592 Triangle, read by rows, of coefficients of q^(nk+k) in the q-analog of the odd double factorials: T(n,k) = [q^(nk+k)] Product_{j=1..n+1} (1-q^(2j-1))/(1-q) for n>0, with T(0,0)=1.
1, 1, 1, 1, 3, 1, 1, 12, 12, 1, 1, 45, 97, 45, 1, 1, 170, 696, 696, 170, 1, 1, 644, 4784, 8447, 4784, 644, 1, 1, 2451, 32230, 92003, 92003, 32230, 2451, 1, 1, 9365, 214978, 946330, 1487477, 946330, 214978, 9365, 1, 1, 35908, 1426566, 9417798, 21856230, 21856230
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 12, 12, 1; 1, 45, 97, 45, 1; 1, 170, 696, 696, 170, 1; 1, 644, 4784, 8447, 4784, 644, 1; 1, 2451, 32230, 92003, 92003, 32230, 2451, 1; 1, 9365, 214978, 946330, 1487477, 946330, 214978, 9365, 1; 1, 35908, 1426566, 9417798, 21856230, 21856230, 9417798, 1426566, 35908, 1; 1, 138104, 9441417, 91852376, 302951392, 441170745, 302951392, 91852376, 9441417, 138104, 1;
Crossrefs
Programs
-
Mathematica
T[n_, k_] := If[k < 0 || k > n*(n + 1), 0, If[n == 0, 1, SeriesCoefficient[Product[(1 - q^(2*j - 1))/(1 - q), {j, 1, n + 1}], {q, 0, (n + 1)*k}]]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 27 2022, from PARI code *)
-
PARI
T(n,k)=if(k<0 || k>n*(n+1),0,if(n==0,1, polcoeff(prod(j=1,n+1,(1-q^(2*j-1))/(1-q)),(n+1)*k,q)))