cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A128593 Column 1 of triangle A128592; a(n) = coefficient of q^(n+2) in the q-analog of the odd double factorials (2n+3)!! for n>=0.

Original entry on oeis.org

1, 3, 12, 45, 170, 644, 2451, 9365, 35908, 138104, 532589, 2058782, 7975216, 30951921, 120326060, 468473348, 1826415556, 7129330988, 27860219331, 108984557708, 426730087879, 1672310507262, 6558840830680, 25742937514814, 101108341344396, 397368218111003
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128592; A128080; A001147 ((2n-1)!!); A128594 (column 2), A128595 (row sums).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
        end:
    a:= n-> coeff(b(n+2), q, n+2):
    seq(a(n), n=0..30);   # Alois P. Heinz, Sep 22 2021
  • Mathematica
    a[n_] := SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+2}], {q, 0, n+2}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
  • PARI
    {a(n)=polcoeff(prod(j=1,n+2,(1-q^(2*j-1))/(1-q)),n+2,q)}

Formula

a(n) = [q^(n+2)] Product_{j=1..n+2} (1-q^(2j-1))/(1-q) for n>=0.

A128594 Column 2 of triangle A128592; a(n) = coefficient of q^(2n+6) in the q-analog of the odd double factorials (2n+5)!! for n>=0.

Original entry on oeis.org

1, 12, 97, 696, 4784, 32230, 214978, 1426566, 9441417, 62405645, 412278981, 2723566163, 17996243101, 118957645301, 786700165122, 5205396517853, 34461624895701, 228274455988134, 1512920531980961, 10032446308837778
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128592; A128080; A001147 ((2n-1)!!); A128593 (column 1), A128595 (row sums).

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+3}], {q, 0, 2n+6}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
  • PARI
    {a(n)=polcoeff(prod(j=1,n+3,(1-q^(2*j-1))/(1-q)),2*n+6,q)}

Formula

a(n) = [q^(2n+6)] Product_{j=1..n+3} (1-q^(2j-1))/(1-q) for n>=0.

A128595 Row sums of triangle A128592.

Original entry on oeis.org

1, 2, 5, 26, 189, 1734, 19305, 253370, 3828825, 65473006, 1249937325, 26352843470, 608142583125, 15247003381854, 412685556908625, 11993673995924378, 372509404162520625, 12313505304343363126, 431620764875678503125
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Comments

A128592(n,k) is the coefficient of q^(nk+k) in the q-analog of the odd double factorials (2n-1)!!.

Crossrefs

Cf. A128592; A128080; A001147 ((2n-1)!!); A128593 (column 1), A128594 (column 2).

Programs

  • Mathematica
    a[n_] := Sum[SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+1}], {q, 0, k(n+1)}], {k, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
  • PARI
    {a(n)=sum(k=0,n,polcoeff(prod(j=1,n+1,(1-q^(2*j-1))/(1-q)),(n+1)*k,q))}

Formula

a(n) = Sum_{k=0..n} { [q^(nk+k)] Product_{j=1..n+1} (1-q^(2j-1))/(1-q) } for n>=0.

A128596 Triangle, read by rows, of coefficients of q^(nk) in the q-analog of the even double factorials: T(n,k) = [q^(nk)] Product_{j=1..n} (1-q^(2j))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 7, 7, 1, 1, 24, 46, 24, 1, 1, 86, 297, 297, 86, 1, 1, 315, 1919, 3210, 1919, 315, 1, 1, 1170, 12399, 32510, 32510, 12399, 1170, 1, 1, 4389, 80241, 318171, 484636, 318171, 80241, 4389, 1, 1, 16588, 520399, 3054100, 6730832, 6730832
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Examples

			Row sums equal 2*A000165(n-1) for n>0, twice the even double factorials:
[1, 2, 4, 16, 96, 768, 7680, 92160, 1290240, ..., 2*(2n-2)!!, ...].
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 7, 7, 1;
1, 24, 46, 24, 1;
1, 86, 297, 297, 86, 1;
1, 315, 1919, 3210, 1919, 315, 1;
1, 1170, 12399, 32510, 32510, 12399, 1170, 1;
1, 4389, 80241, 318171, 484636, 318171, 80241, 4389, 1;
1, 16588, 520399, 3054100, 6730832, 6730832, 3054100, 520399, 16588, 1;
1, 63064, 3382588, 28980565, 89514691, 127707302, 89514691, 28980565, 3382588, 63064, 1;
		

Crossrefs

Cf. A128084; A000165 ((2n)!!); A128086 (column 1), A128597 (column 2), A128598 (column 3); variant: A128592.

Programs

  • PARI
    T(n,k)=if(k<0 || k>n^2,0,if(n==0,1,polcoeff(prod(j=1,n,(1-q^(2*j))/(1-q)),n*k,q)))

Formula

T(n,k) = A128084(n,nk) where A128084 is the triangle of coefficients of q in the q-analog of the even double factorials.
Showing 1-4 of 4 results.