cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128597 Column 2 of triangle A128596; a(n) = coefficient of q^(2n+4) in the q-analog of the even double factorials (2n+4)!! for n>=0.

Original entry on oeis.org

1, 7, 46, 297, 1919, 12399, 80241, 520399, 3382588, 22034519, 143826980, 940569228, 6161492611, 40426009162, 265617089899, 1747501590554, 11510584144337, 75901841055650, 501007227527884, 3310076954166501
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128596; A128084; A000165 ((2n)!!); A128086 (column 1), A128598 (column 3).

Programs

  • PARI
    {a(n)=polcoeff(prod(j=1,n+2,(1-q^(2*j))/(1-q)),2*n+4,q)}

Formula

a(n) = [q^(2n+4)] Product_{j=1..n+2} (1-q^(2j))/(1-q) for n>=0.

A128598 Column 3 of triangle A128596; a(n) = coefficient of q^(3n+9) in the q-analog of the even double factorials (2n+6)!! for n>=0.

Original entry on oeis.org

1, 24, 297, 3210, 32510, 318171, 3054100, 28980565, 273077443, 2562036673, 23973009386, 223949654108, 2090070431683, 19496003736658, 181815760387221, 1695523268254637, 15813185728272754, 147508341317700463
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128596; A128084; A000165 ((2n)!!); A128086 (column 1), A128597 (column 2).

Programs

  • PARI
    {a(n)=polcoeff(prod(j=1,n+3,(1-q^(2*j))/(1-q)),3*n+9,q)}

Formula

a(n) = [q^(3n+9)] Product_{j=1..n+3} (1-q^(2j))/(1-q) for n>=0.

A128592 Triangle, read by rows, of coefficients of q^(nk+k) in the q-analog of the odd double factorials: T(n,k) = [q^(nk+k)] Product_{j=1..n+1} (1-q^(2j-1))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 12, 1, 1, 45, 97, 45, 1, 1, 170, 696, 696, 170, 1, 1, 644, 4784, 8447, 4784, 644, 1, 1, 2451, 32230, 92003, 92003, 32230, 2451, 1, 1, 9365, 214978, 946330, 1487477, 946330, 214978, 9365, 1, 1, 35908, 1426566, 9417798, 21856230, 21856230
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Examples

			Triangle begins:
1;
1, 1;
1, 3, 1;
1, 12, 12, 1;
1, 45, 97, 45, 1;
1, 170, 696, 696, 170, 1;
1, 644, 4784, 8447, 4784, 644, 1;
1, 2451, 32230, 92003, 92003, 32230, 2451, 1;
1, 9365, 214978, 946330, 1487477, 946330, 214978, 9365, 1;
1, 35908, 1426566, 9417798, 21856230, 21856230, 9417798, 1426566, 35908, 1;
1, 138104, 9441417, 91852376, 302951392, 441170745, 302951392, 91852376, 9441417, 138104, 1;
		

Crossrefs

Cf. A128080; A001147 ((2n-1)!!); A128593 (column 1), A128594 (column 2), A128595 (row sums); variant: A128596.

Programs

  • Mathematica
    T[n_, k_] := If[k < 0 || k > n*(n + 1), 0, If[n == 0, 1, SeriesCoefficient[Product[(1 - q^(2*j - 1))/(1 - q), {j, 1, n + 1}], {q, 0, (n + 1)*k}]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 27 2022, from PARI code *)
  • PARI
    T(n,k)=if(k<0 || k>n*(n+1),0,if(n==0,1, polcoeff(prod(j=1,n+1,(1-q^(2*j-1))/(1-q)),(n+1)*k,q)))

Formula

T(n,k) = A128080(n+1,nk+k) where A128080 is the triangle of coefficients of q in the q-analog of the odd double factorials.
Showing 1-3 of 3 results.