cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A128592 Triangle, read by rows, of coefficients of q^(nk+k) in the q-analog of the odd double factorials: T(n,k) = [q^(nk+k)] Product_{j=1..n+1} (1-q^(2j-1))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 12, 1, 1, 45, 97, 45, 1, 1, 170, 696, 696, 170, 1, 1, 644, 4784, 8447, 4784, 644, 1, 1, 2451, 32230, 92003, 92003, 32230, 2451, 1, 1, 9365, 214978, 946330, 1487477, 946330, 214978, 9365, 1, 1, 35908, 1426566, 9417798, 21856230, 21856230
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Examples

			Triangle begins:
1;
1, 1;
1, 3, 1;
1, 12, 12, 1;
1, 45, 97, 45, 1;
1, 170, 696, 696, 170, 1;
1, 644, 4784, 8447, 4784, 644, 1;
1, 2451, 32230, 92003, 92003, 32230, 2451, 1;
1, 9365, 214978, 946330, 1487477, 946330, 214978, 9365, 1;
1, 35908, 1426566, 9417798, 21856230, 21856230, 9417798, 1426566, 35908, 1;
1, 138104, 9441417, 91852376, 302951392, 441170745, 302951392, 91852376, 9441417, 138104, 1;
		

Crossrefs

Cf. A128080; A001147 ((2n-1)!!); A128593 (column 1), A128594 (column 2), A128595 (row sums); variant: A128596.

Programs

  • Mathematica
    T[n_, k_] := If[k < 0 || k > n*(n + 1), 0, If[n == 0, 1, SeriesCoefficient[Product[(1 - q^(2*j - 1))/(1 - q), {j, 1, n + 1}], {q, 0, (n + 1)*k}]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 27 2022, from PARI code *)
  • PARI
    T(n,k)=if(k<0 || k>n*(n+1),0,if(n==0,1, polcoeff(prod(j=1,n+1,(1-q^(2*j-1))/(1-q)),(n+1)*k,q)))

Formula

T(n,k) = A128080(n+1,nk+k) where A128080 is the triangle of coefficients of q in the q-analog of the odd double factorials.

A128594 Column 2 of triangle A128592; a(n) = coefficient of q^(2n+6) in the q-analog of the odd double factorials (2n+5)!! for n>=0.

Original entry on oeis.org

1, 12, 97, 696, 4784, 32230, 214978, 1426566, 9441417, 62405645, 412278981, 2723566163, 17996243101, 118957645301, 786700165122, 5205396517853, 34461624895701, 228274455988134, 1512920531980961, 10032446308837778
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128592; A128080; A001147 ((2n-1)!!); A128593 (column 1), A128595 (row sums).

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+3}], {q, 0, 2n+6}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
  • PARI
    {a(n)=polcoeff(prod(j=1,n+3,(1-q^(2*j-1))/(1-q)),2*n+6,q)}

Formula

a(n) = [q^(2n+6)] Product_{j=1..n+3} (1-q^(2j-1))/(1-q) for n>=0.

A128595 Row sums of triangle A128592.

Original entry on oeis.org

1, 2, 5, 26, 189, 1734, 19305, 253370, 3828825, 65473006, 1249937325, 26352843470, 608142583125, 15247003381854, 412685556908625, 11993673995924378, 372509404162520625, 12313505304343363126, 431620764875678503125
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Comments

A128592(n,k) is the coefficient of q^(nk+k) in the q-analog of the odd double factorials (2n-1)!!.

Crossrefs

Cf. A128592; A128080; A001147 ((2n-1)!!); A128593 (column 1), A128594 (column 2).

Programs

  • Mathematica
    a[n_] := Sum[SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+1}], {q, 0, k(n+1)}], {k, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
  • PARI
    {a(n)=sum(k=0,n,polcoeff(prod(j=1,n+1,(1-q^(2*j-1))/(1-q)),(n+1)*k,q))}

Formula

a(n) = Sum_{k=0..n} { [q^(nk+k)] Product_{j=1..n+1} (1-q^(2j-1))/(1-q) } for n>=0.

A304781 a(n) = [x^n] (1/(1 - x)^n)*Product_{k>=1} (1 + x^k).

Original entry on oeis.org

1, 2, 6, 21, 75, 274, 1016, 3807, 14377, 54627, 208584, 799669, 3076167, 11867511, 45897145, 177888715, 690770763, 2686879415, 10466761637, 40828165464, 159453481037, 623427464093, 2439907421914, 9557831470082, 37472409664888, 147028505564603, 577302980976146
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2018

Keywords

Comments

Number of partitions of n into odd parts with n + 1 kinds of 1.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x)^n Product[(1 + x^k), {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[1/(1 - x)^n Product[1/(1 - x^(2 k - 1)), {k, 1, n}], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[1/(1 - x)^n Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 26}]
    Table[SeriesCoefficient[QPochhammer[-1, x]/(2 (1 - x)^n), {x, 0, n}], {n, 0, 26}]

Formula

a(n) = [x^n] (1/(1 - x)^n)*Product_{k>=1} 1/(1 - x^(2*k-1)).
a(n) = [x^n] (1/(1 - x)^n)*exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))).
a(n) ~ QPochhammer[-1, 1/2] * 4^(n-1) / sqrt(Pi*n). - Vaclav Kotesovec, May 18 2018
Showing 1-4 of 4 results.