cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128593 Column 1 of triangle A128592; a(n) = coefficient of q^(n+2) in the q-analog of the odd double factorials (2n+3)!! for n>=0.

Original entry on oeis.org

1, 3, 12, 45, 170, 644, 2451, 9365, 35908, 138104, 532589, 2058782, 7975216, 30951921, 120326060, 468473348, 1826415556, 7129330988, 27860219331, 108984557708, 426730087879, 1672310507262, 6558840830680, 25742937514814, 101108341344396, 397368218111003
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128592; A128080; A001147 ((2n-1)!!); A128594 (column 2), A128595 (row sums).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
        end:
    a:= n-> coeff(b(n+2), q, n+2):
    seq(a(n), n=0..30);   # Alois P. Heinz, Sep 22 2021
  • Mathematica
    a[n_] := SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+2}], {q, 0, n+2}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
  • PARI
    {a(n)=polcoeff(prod(j=1,n+2,(1-q^(2*j-1))/(1-q)),n+2,q)}

Formula

a(n) = [q^(n+2)] Product_{j=1..n+2} (1-q^(2j-1))/(1-q) for n>=0.

A128592 Triangle, read by rows, of coefficients of q^(nk+k) in the q-analog of the odd double factorials: T(n,k) = [q^(nk+k)] Product_{j=1..n+1} (1-q^(2j-1))/(1-q) for n>0, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 12, 1, 1, 45, 97, 45, 1, 1, 170, 696, 696, 170, 1, 1, 644, 4784, 8447, 4784, 644, 1, 1, 2451, 32230, 92003, 92003, 32230, 2451, 1, 1, 9365, 214978, 946330, 1487477, 946330, 214978, 9365, 1, 1, 35908, 1426566, 9417798, 21856230, 21856230
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Examples

			Triangle begins:
1;
1, 1;
1, 3, 1;
1, 12, 12, 1;
1, 45, 97, 45, 1;
1, 170, 696, 696, 170, 1;
1, 644, 4784, 8447, 4784, 644, 1;
1, 2451, 32230, 92003, 92003, 32230, 2451, 1;
1, 9365, 214978, 946330, 1487477, 946330, 214978, 9365, 1;
1, 35908, 1426566, 9417798, 21856230, 21856230, 9417798, 1426566, 35908, 1;
1, 138104, 9441417, 91852376, 302951392, 441170745, 302951392, 91852376, 9441417, 138104, 1;
		

Crossrefs

Cf. A128080; A001147 ((2n-1)!!); A128593 (column 1), A128594 (column 2), A128595 (row sums); variant: A128596.

Programs

  • Mathematica
    T[n_, k_] := If[k < 0 || k > n*(n + 1), 0, If[n == 0, 1, SeriesCoefficient[Product[(1 - q^(2*j - 1))/(1 - q), {j, 1, n + 1}], {q, 0, (n + 1)*k}]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 27 2022, from PARI code *)
  • PARI
    T(n,k)=if(k<0 || k>n*(n+1),0,if(n==0,1, polcoeff(prod(j=1,n+1,(1-q^(2*j-1))/(1-q)),(n+1)*k,q)))

Formula

T(n,k) = A128080(n+1,nk+k) where A128080 is the triangle of coefficients of q in the q-analog of the odd double factorials.

A128594 Column 2 of triangle A128592; a(n) = coefficient of q^(2n+6) in the q-analog of the odd double factorials (2n+5)!! for n>=0.

Original entry on oeis.org

1, 12, 97, 696, 4784, 32230, 214978, 1426566, 9441417, 62405645, 412278981, 2723566163, 17996243101, 118957645301, 786700165122, 5205396517853, 34461624895701, 228274455988134, 1512920531980961, 10032446308837778
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Cf. A128592; A128080; A001147 ((2n-1)!!); A128593 (column 1), A128595 (row sums).

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+3}], {q, 0, 2n+6}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
  • PARI
    {a(n)=polcoeff(prod(j=1,n+3,(1-q^(2*j-1))/(1-q)),2*n+6,q)}

Formula

a(n) = [q^(2n+6)] Product_{j=1..n+3} (1-q^(2j-1))/(1-q) for n>=0.
Showing 1-3 of 3 results.