cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128567 Matrix square, T(n,k), of Parker's partition triangle A047812, read by rows (n >= 1 and 0 <= k <= n-1).

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 14, 31, 14, 1, 42, 133, 117, 22, 1, 132, 587, 813, 300, 36, 1, 429, 2531, 4871, 2896, 692, 52, 1, 1430, 10950, 27743, 23961, 9206, 1430, 76, 1, 4862, 47185, 151208, 175734, 96418, 24598, 2798, 104, 1, 16796, 203704, 804065, 1200301, 882471, 329426, 62885, 5236, 146, 1
Offset: 1

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Comments

Column 0 is the Catalan numbers (A000108). Parker's partition triangle may be defined as: A047812(n,k) = [q^(n*k+k)] in the central q-binomial coefficient [2*n,n] for n >= 1 and 0 <= k <= n-1. [Edited by Petros Hadjicostas, May 30 2020]

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) begins:
      1;
      2,      1;
      5,      6,      1;
     14,     31,     14,       1;
     42,    133,    117,      22,      1;
    132,    587,    813,     300,     36,      1;
    429,   2531,   4871,    2896,    692,     52,     1;
   1430,  10950,  27743,   23961,   9206,   1430,    76,    1;
   4862,  47185, 151208,  175734,  96418,  24598,  2798,  104,   1;
  16796, 203704, 804065, 1200301, 882471, 329426, 62885, 5236, 146, 1;
  ...
		

Crossrefs

Cf. A000108 (column k=0), A047812, A128568 (column k=1), A128569 (column k=2), A128602 (row sums).

Programs

  • PARI
    {T(n, k)=local(M);M=matrix(n+1,n+1,r,c,if(rPetros Hadjicostas, May 31 2020

Formula

T(n,k) = Sum_{s=k..n-1} A047812(n,s)*A047812(s+1,k) for n >= 1 and 0 <= k <= n-1. - Petros Hadjicostas, May 31 2020

Extensions

Name edited and offset changed by Petros Hadjicostas, May 30 2020

A128568 Column 1 of triangle A128567.

Original entry on oeis.org

1, 6, 31, 133, 587, 2531, 10950, 47185, 203704, 879711, 3804530, 16464710, 71312805, 309083291, 1340546867, 5817555402, 25258769216, 109711224970, 476675868834, 2071569641859, 9004430215111, 39144480326143, 170184867215647, 739924236443359, 3217001700174226
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Comments

A128567 is the matrix square of Parker's partition triangle A047812.

Crossrefs

Cf. A007042, A047812, A128567, A128569 (column 2), A128602 (row sums).

Programs

  • PARI
    {a(n)=local(M);M=matrix(n+2,n+2,r,c,if(r
    				

Formula

a(n) = Sum_{s=1..n+1} A047812(n+2,s)*A047812(s+1,1) = Sum_{s=1..n+1} A047812(n+2,s)*A007042(s+1) for n >= 0. - Petros Hadjicostas, May 31 2020

A128569 Column 2 of triangle A128567.

Original entry on oeis.org

1, 14, 117, 813, 4871, 27743, 151208, 804065, 4185683, 21472005, 108766010, 545507633, 2712801330, 13394412999, 65722444172, 320721839860, 1557502222385, 7530671086667, 36267851679585, 174038009185816, 832392015517829, 3969017685816667, 18871416851149078
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Comments

A128567 is the matrix square of Parker's partition triangle A047812.

Crossrefs

Cf. A047812, A128567, A128568 (column 1), A128602 (row sums).

Programs

  • PARI
    {a(n)=local(M);M=matrix(n+3,n+3,r,c,if(r
    				

Formula

a(n) = Sum_{s=2..n+2} A047812(n+3,s)*A047812(s+1,2) for n >= 0. - Petros Hadjicostas, May 31 2020
Showing 1-3 of 3 results.