A128615 Expansion of x/(1 + x + x^2 - x^3 - x^4 - x^5).
0, 1, -1, 0, 2, -2, 0, 3, -3, 0, 4, -4, 0, 5, -5, 0, 6, -6, 0, 7, -7, 0, 8, -8, 0, 9, -9, 0, 10, -10, 0, 11, -11, 0, 12, -12, 0, 13, -13, 0, 14, -14, 0, 15, -15, 0, 16, -16, 0, 17, -17, 0, 18, -18, 0, 19, -19
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,1,1,1).
Programs
-
Magma
[Floor((n+3)/3)*((n+1) mod 3 -1): n in [0..40]]; // G. C. Greubel, Mar 26 2024
-
Mathematica
CoefficientList[Series[x/(1+x+x^2-x^3-x^4-x^5),{x,0,60}],x] (* or *) LinearRecurrence[{-1,-1,1,1,1},{0,1,-1,0,2},60] (* or *) Table[{0,n,-n},{n,20}]//Flatten (* Harvey P. Dale, Jul 15 2017 *) Table[Floor[(n+3)/3]*(Mod[n+1,3] -1), {n,0,40}] (* G. C. Greubel, Mar 26 2024 *)
-
SageMath
[((n+3)//3)*((n+1)%3 -1) for n in range(41)] # G. C. Greubel, Mar 26 2024
Formula
G.f.: x/((1-x)*(1+x+x^2)^2) = x*(1-x)/(1-x^3)^2.
a(n) = (1/9)*(1 - cos(2*Pi*n/3) + sqrt(3)*(2*n + 3)*sin(2*Pi*n/3)).
a(n) = floor((n+3)/3)*A049347(n+2). - G. C. Greubel, Mar 26 2024
Comments