A128618 Triangle read by rows: A128174 * A127647 as infinite lower triangular matrices.
1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 2, 0, 5, 0, 1, 0, 3, 0, 8, 1, 0, 2, 0, 5, 0, 13, 0, 1, 0, 3, 0, 8, 0, 21, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 1, 0, 3, 0, 8, 0, 21, 0, 55, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89, 0, 1, 0, 3, 0, 8, 0, 21, 0, 55, 0, 144, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89, 0, 233
Offset: 1
Examples
First few rows of the triangle are: 1; 0, 1; 1, 0, 2; 0, 1, 0, 3; 1, 0, 2, 0, 5; 0, 1, 0, 3, 0, 8; 1, 0, 2, 0, 5, 0, 13; 0, 1, 0, 3, 0, 8, 0, 21; 1, 0, 2, 0, 5, 0, 13, 0, 34; 0, 1, 0, 3, 0, 8, 0, 21, 0, 55; 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89; ...
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Programs
-
Magma
[((n+k+1) mod 2)*Fibonacci(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 17 2024
-
Mathematica
Table[Fibonacci[k]*Mod[n-k+1,2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 17 2024 *)
-
SageMath
flatten([[((n-k+1)%2)*fibonacci(k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 17 2024
Formula
By columns, Fibonacci(k) interspersed with alternate zeros in every column, k=1,2,3,...
Sum_{k=1..n} T(n, k) = A052952(n-1) (row sums).
From G. C. Greubel, Mar 17 2024: (Start)
T(n, k) = (1/2)*(1 + (-1)^(n+k))*Fibonacci(k).
T(n, n) = A000045(n).
T(2*n-1, n) = (1/2)*(1-(-1)^n)*A000045(n).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A052952(n-1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1 - (-1)^n)*(Fibonacci((n+ 5)/2) - 1).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1-(-1)^n) * A355020(floor((n-1)/2)). (End)
Extensions
a(6) corrected and more terms from Georg Fischer, May 30 2023
Comments