A128619 Triangle T(n, k) = A127647(n,k) * A128174(n,k), read by rows.
1, 0, 1, 2, 0, 2, 0, 3, 0, 3, 5, 0, 5, 0, 5, 0, 8, 0, 8, 0, 8, 13, 0, 13, 0, 13, 0, 13, 0, 21, 0, 21, 0, 21, 0, 21, 34, 0, 34, 0, 34, 0, 34, 0, 34, 0, 55, 0, 55, 0, 55, 0, 55, 0, 55
Offset: 1
Examples
First few rows of the triangle are: 1; 0, 1; 2, 0, 2; 0, 3, 0, 3; 5, 0, 5, 0, 5; 0, 8, 0, 8, 0, 8; 13, 0, 13, 0, 13, 0, 13; 0, 21, 0, 21, 0, 21, 0, 21, ...
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
[((n+k+1) mod 2)*Fibonacci(n): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 17 2024
-
Mathematica
Table[Fibonacci[n]*Mod[n+k+1,2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 16 2024 *)
-
SageMath
flatten([[((n+k+1)%2)*fibonacci(n) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 17 2024
Formula
T(n, k) = A127647 * A128174, an infinite lower triangular matrix. In odd rows, n terms of F(n), 0, F(n),...; in the n-th row. In even rows, n terms of 0, F(n), 0,...; in the n-th row.
Sum_{k=1..n} T(n, k) = A128620(n-1).
From G. C. Greubel, Mar 16 2024: (Start)
T(n, k) = Fibonacci(n)*(1 + (-1)^(n+k))/2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^n*A128620(n-1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n)*A096140(floor((n + 1)/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1 - (-1)^n)*( Fibonacci(n-1) + (-1)^floor((n-1)/2) * Fibonacci(floor((n-3)/2)) ). (End)
Comments