A128620 Row sums of A128619.
1, 1, 4, 6, 15, 24, 52, 84, 170, 275, 534, 864, 1631, 2639, 4880, 7896, 14373, 23256, 41810, 67650, 120406, 194821, 343884, 556416, 975325, 1578109, 2749852, 4449354, 7713435, 12480600, 21540304, 34852944, 59917826, 96949079, 166094370, 268746336
Offset: 0
Examples
a(5) = 15 = sum of row 5 in A128619: (5 + 0 + 5 + 0 + 5).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-4,1,1).
Programs
-
Magma
[Floor((n+2)/2)*Fibonacci(n+1): n in [0..40]]; // G. C. Greubel, Mar 15 2024
-
Mathematica
LinearRecurrence[{1,4,-3,-4,1,1}, {1,1,4,6,15,24}, 40] (* or *) Table[Floor[(n+2)/2] Fibonacci[n+1], {n, 0, 40}] (* Bruno Berselli, Dec 02 2013 *)
-
PARI
a(n)= ((n+2)\2) * fibonacci(n+1); \\ Michel Marcus, Dec 02 2013
-
SageMath
[int((n+2)/2)*fibonacci(n+1) for n in range(41)] # G. C. Greubel, Mar 15 2024
Formula
a(n) = floor((n+2)/2)*Fibonacci(n+1). - Philippe Deléham, Dec 01 2013
G.f.: (1 - x^2 + x^3)/((1 + x - x^2)*(1 - x - x^2)^2). - Bruno Berselli, Dec 02 2013
Extensions
More terms from Philippe Deléham, Dec 01 2013
a(31) corrected from Bruno Berselli, Dec 02 2013
Comments