cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A128620 Row sums of A128619.

Original entry on oeis.org

1, 1, 4, 6, 15, 24, 52, 84, 170, 275, 534, 864, 1631, 2639, 4880, 7896, 14373, 23256, 41810, 67650, 120406, 194821, 343884, 556416, 975325, 1578109, 2749852, 4449354, 7713435, 12480600, 21540304, 34852944, 59917826, 96949079, 166094370, 268746336
Offset: 0

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Comments

Diagonals sums of A199512. - Philippe Deléham, Dec 01 2013

Examples

			a(5) = 15 = sum of row 5 in A128619: (5 + 0 + 5 + 0 + 5).
		

Crossrefs

Programs

  • Magma
    [Floor((n+2)/2)*Fibonacci(n+1): n in [0..40]]; // G. C. Greubel, Mar 15 2024
    
  • Mathematica
    LinearRecurrence[{1,4,-3,-4,1,1}, {1,1,4,6,15,24}, 40] (* or *)
    Table[Floor[(n+2)/2] Fibonacci[n+1], {n, 0, 40}] (* Bruno Berselli, Dec 02 2013 *)
  • PARI
    a(n)= ((n+2)\2) * fibonacci(n+1); \\ Michel Marcus, Dec 02 2013
    
  • SageMath
    [int((n+2)/2)*fibonacci(n+1) for n in range(41)] # G. C. Greubel, Mar 15 2024

Formula

a(n) = floor((n+2)/2)*Fibonacci(n+1). - Philippe Deléham, Dec 01 2013
G.f.: (1 - x^2 + x^3)/((1 + x - x^2)*(1 - x - x^2)^2). - Bruno Berselli, Dec 02 2013

Extensions

More terms from Philippe Deléham, Dec 01 2013
a(31) corrected from Bruno Berselli, Dec 02 2013

A128618 Triangle read by rows: A128174 * A127647 as infinite lower triangular matrices.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 2, 0, 5, 0, 1, 0, 3, 0, 8, 1, 0, 2, 0, 5, 0, 13, 0, 1, 0, 3, 0, 8, 0, 21, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 1, 0, 3, 0, 8, 0, 21, 0, 55, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89, 0, 1, 0, 3, 0, 8, 0, 21, 0, 55, 0, 144, 1, 0, 2, 0, 5, 0, 13, 0, 34, 0, 89, 0, 233
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Comments

This triangle is different from A128619, which is A128619 = A127647 * A128174.

Examples

			First few rows of the triangle are:
  1;
  0, 1;
  1, 0, 2;
  0, 1, 0, 3;
  1, 0, 2, 0, 5;
  0, 1, 0, 3, 0, 8;
  1, 0, 2, 0, 5, 0, 13;
  0, 1, 0, 3, 0, 8,  0, 21;
  1, 0, 2, 0, 5, 0, 13,  0, 34;
  0, 1, 0, 3, 0, 8,  0, 21,  0, 55;
  1, 0, 2, 0, 5, 0, 13,  0, 34,  0, 89;
  ...
		

Crossrefs

Programs

  • Magma
    [((n+k+1) mod 2)*Fibonacci(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 17 2024
    
  • Mathematica
    Table[Fibonacci[k]*Mod[n-k+1,2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 17 2024 *)
  • SageMath
    flatten([[((n-k+1)%2)*fibonacci(k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 17 2024

Formula

By columns, Fibonacci(k) interspersed with alternate zeros in every column, k=1,2,3,...
Sum_{k=1..n} T(n, k) = A052952(n-1) (row sums).
From G. C. Greubel, Mar 17 2024: (Start)
T(n, k) = (1/2)*(1 + (-1)^(n+k))*Fibonacci(k).
T(n, n) = A000045(n).
T(2*n-1, n) = (1/2)*(1-(-1)^n)*A000045(n).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A052952(n-1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1 - (-1)^n)*(Fibonacci((n+ 5)/2) - 1).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1-(-1)^n) * A355020(floor((n-1)/2)). (End)

Extensions

a(6) corrected and more terms from Georg Fischer, May 30 2023
Showing 1-2 of 2 results.