cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128622 Triangle T(n, k) = A128064(unsigned) * A128174, read by rows.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 3, 4, 3, 4, 5, 4, 5, 4, 5, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 7, 6, 7, 7, 8, 7, 8, 7, 8, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 9, 10, 9, 10, 9, 10, 9, 10, 9, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 11, 12, 11, 12, 11, 12, 11, 12, 11, 12, 11, 12
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1, 2;
  3, 2, 3;
  3, 4, 3, 4;
  5, 4, 5, 4, 5;
  5, 6, 5, 6, 5, 6;
  7, 6, 7, 6, 7, 6, 7;
  ...
		

Crossrefs

Cf. A000326 (diagonal sums), A014848 (row sums), A319556 (alternating row sums).

Programs

  • Magma
    [n - ((n+k) mod 2): k in [1..n], n in [1..16]]; // G. C. Greubel, Mar 14 2024
    
  • Mathematica
    Table[n - Mod[n+k,2], {n,16}, {k,n}]//Flatten (* G. C. Greubel, Mar 14 2024 *)
  • SageMath
    flatten([[n - ((n+k)%2) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 14 2024

Formula

T(n, k) = abs(A128064(n,k) * A128174(n, k), as infinite lower triangular matrices.
Sum_{k=1..n} T(n, k) = A014848(n) (row sums).
From G. C. Greubel, Mar 14 2024: (Start)
T(n, k) = n - (1 - (-1)^(n+k))/2 = n - (n+k mod 2).
T(n, 1) = A109613(n+1).
T(n, n) = A000027(n).
T(2*n-1, n) = A042963(n).
T(3*n-1, n) = A016777(n+1).
T(4*n-3, n) = A047461(n).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A319556(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A000326(floor((n+1)/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = A123684(floor((n+1)/2)). (End)

Extensions

More terms added by G. C. Greubel, Mar 14 2024