A128622 Triangle T(n, k) = A128064(unsigned) * A128174, read by rows.
1, 1, 2, 3, 2, 3, 3, 4, 3, 4, 5, 4, 5, 4, 5, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 7, 6, 7, 7, 8, 7, 8, 7, 8, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 9, 10, 9, 10, 9, 10, 9, 10, 9, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 11, 12, 11, 12, 11, 12, 11, 12, 11, 12, 11, 12
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 2; 3, 2, 3; 3, 4, 3, 4; 5, 4, 5, 4, 5; 5, 6, 5, 6, 5, 6; 7, 6, 7, 6, 7, 6, 7; ...
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
[n - ((n+k) mod 2): k in [1..n], n in [1..16]]; // G. C. Greubel, Mar 14 2024
-
Mathematica
Table[n - Mod[n+k,2], {n,16}, {k,n}]//Flatten (* G. C. Greubel, Mar 14 2024 *)
-
SageMath
flatten([[n - ((n+k)%2) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 14 2024
Formula
Sum_{k=1..n} T(n, k) = A014848(n) (row sums).
From G. C. Greubel, Mar 14 2024: (Start)
T(n, k) = n - (1 - (-1)^(n+k))/2 = n - (n+k mod 2).
T(n, 1) = A109613(n+1).
T(n, n) = A000027(n).
T(2*n-1, n) = A042963(n).
T(3*n-1, n) = A016777(n+1).
T(4*n-3, n) = A047461(n).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A319556(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A000326(floor((n+1)/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = A123684(floor((n+1)/2)). (End)
Extensions
More terms added by G. C. Greubel, Mar 14 2024