A128623 Triangle read by rows: A128621 * A000012 as infinite lower triangular matrices.
1, 2, 2, 6, 3, 3, 8, 8, 4, 4, 15, 10, 10, 5, 5, 18, 18, 12, 12, 6, 6, 28, 21, 21, 14, 14, 7, 7, 32, 32, 24, 24, 16, 16, 8, 8, 45, 36, 36, 27, 27, 18, 18, 9, 9, 50, 50, 40, 40, 30, 30, 20, 20, 10, 10, 66, 55, 55, 44, 44, 33, 33, 22, 22, 11, 11, 72, 72, 60, 60, 48, 48, 36, 36, 24, 24, 12, 12, 91, 78, 78, 65, 65, 52, 52, 39, 39, 26, 26, 13, 13
Offset: 1
Examples
First few rows of the triangle are: 1; 2, 2; 6, 3, 3; 8, 8, 4, 4; 15, 10, 10, 5, 5; 18, 18, 12, 12, 6, 6; 28, 21, 21, 14, 14, 7, 7; ...
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Programs
-
Magma
[n*Floor((n-k+2)/2): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 13 2024
-
Mathematica
Table[n*Floor[(n-k+2)/2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 13 2024 *)
-
SageMath
flatten([[n*((n-k+2)//2) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 13 2024
Formula
Sum_{k=1..n} T(n, k) = A128624(n) (row sums).
T(n,k) = n*(1+floor((n-k)/2)), 1 <= k <= n. - R. J. Mathar, Jun 27 2012
From G. C. Greubel, Mar 13 2024: (Start)
T(n, k) = n*A115514(n, k).
T(n, k) = Sum_{j=k..n} A128621(n, j).
T(n, 1) = A093005(n).
T(n, 2) = A093353(n-1), n >= 2.
T(n, n) = A000027(n).
T(2*n-1, n) = A245524(n).
Sum_{k=1..n} (-1)^k*T(n, k) = (1/2)*(1-(-1)^n)*A000384(floor((n+1)/2)). (End)
Extensions
a(41) = 27 inserted and more terms from Georg Fischer, Jun 05 2023