cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A128624 Row sums of A128623.

Original entry on oeis.org

1, 4, 12, 24, 45, 72, 112, 160, 225, 300, 396, 504, 637, 784, 960, 1152, 1377, 1620, 1900, 2200, 2541, 2904, 3312, 3744, 4225, 4732, 5292, 5880, 6525, 7200, 7936, 8704, 9537, 10404, 11340, 12312, 13357, 14440, 15600, 16800, 18081, 19404, 20812, 22264, 23805
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Comments

Also the number of (w,x,y) with all terms in {0,...,n-1} and w <= R <= x, where R = max(w,x,y)-min(w,x,y), see A212959. - Clark Kimberling, Jun 10 2012

Crossrefs

Cf. A094728 (diagonal row sums).

Programs

  • Magma
    [n*((n+1)^2-1+(n mod 2))/4: n in [1..50]]; // G. C. Greubel, Mar 12 2024
    
  • Mathematica
    Table[n*(n^2 +2*n +Mod[n,2])/4, {n,50}] (* G. C. Greubel, Mar 12 2024 *)
  • PARI
    Vec(x*(1+2*x+3*x^2)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 31 2016
    
  • SageMath
    [n*((n+1)^2-1+(n%2))//4 for n in range(1,51)] # G. C. Greubel, Mar 12 2024

Formula

G.f.: x*(1+2*x+3*x^2) / ((1+x)^2*(1-x)^4). - R. J. Mathar, Jun 27 2012
From Colin Barker, Jan 31 2016: (Start)
a(n) = n*(2*n^2 + 4*n + 1 - (-1)^n)/8.
a(n) = n^2*(n + 2)/4 for n even.
a(n) = n*(n^2 + 2*n + 1)/4 for n odd. (End)
From G. C. Greubel, Mar 12 2024: (Start)
a(n) = Sum_{k=0..floor((n-1)/2)} A094728(n, k).
E.g.f.: (1/8)*x*(exp(-x) + (7 + 10*x + 2*x^2)*exp(x)). (End)

Extensions

Incorrect formula removed by R. J. Mathar, Jun 27 2012

A115514 Triangle read by rows: row n >= 1 lists first n positive terms of A004526 (integers repeated) in decreasing order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 1, 4, 3, 3, 2, 2, 1, 1, 4, 4, 3, 3, 2, 2, 1, 1, 5, 4, 4, 3, 3, 2, 2, 1, 1, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 1

Views

Author

Roger L. Bagula, Mar 07 2006

Keywords

Comments

T(n,k) = number of 2-element subsets of {1,2,...,n+2} such that the absolute difference of the elements is k+1, where 1 <= k < = n. E.g., T(7,3) = 3, the subsets are {1,5}, {2,6}, and {3,7}. - Christian Barrientos, Jun 27 2022

Examples

			Triangle begins as, for n >= 1, 1 <= k <= n,
  1;
  1, 1;
  2, 1, 1;
  2, 2, 1, 1;
  3, 2, 2, 1, 1;
  3, 3, 2, 2, 1, 1;
  4, 3, 3, 2, 2, 1, 1;
  ...
		

Crossrefs

Cf. A002620 (row sums), A008805 (diagonal sums), A142150 (alternating row sums)

Programs

  • Magma
    [Floor((n-k+2)/2): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 14 2024
    
  • Maple
    # Assuming offset 0:
    Even := n -> (1 + (-1)^n)/2: # Iverson's even.
    p := n -> add(add(Even(k)*x^j, j = 0..n-k), k = 0..n):
    for n from 0 to 9 do seq(coeff(p(n), x, k), k=0..n) od; # Peter Luschny, Jun 03 2021
  • Mathematica
    Table[Floor[(n-k+2)/2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 14 2024 *)
  • SageMath
    flatten([[(n-k+2)//2 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 14 2024

Formula

Sum_{k=1..n} T(n, k) = A002620(n+1) (row sums). - Gary W. Adamson, Oct 25 2007
T(n, k) = [x^k] p(n), where p(n) are partial Gaussian polynomials (A008967) defined by p(n) = Sum_{k=0..n} Sum_{j=0..n-k} even(k)*x^j, and even(k) = 1 if k is even and otherwise 0. We assume offset 0. - Peter Luschny, Jun 03 2021
T(n, k) = floor((n+2-k)/2). - Christian Barrientos, Jun 27 2022
From G. C. Greubel, Mar 14 2024: (Start)
T(n, k) = A128623(n, k)/n.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A142150(n+1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A008805(n-1).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = A002265(n+3). (End)

Extensions

Edited by N. J. A. Sloane, Mar 23 2008 and Dec 15 2017
Showing 1-2 of 2 results.