cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123633 Expansion of (c(q^2)/c(q))^3 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, -3, 3, 5, -18, 15, 24, -75, 57, 86, -252, 183, 262, -744, 522, 725, -1998, 1365, 1852, -4986, 3336, 4436, -11736, 7719, 10103, -26322, 17067, 22040, -56682, 36306, 46336, -117867, 74700, 94378, -237744, 149277, 186926, -466836, 290706, 361126, -895014, 553224
Offset: 1

Views

Author

Michael Somos, Oct 03 2006, Jan 21 2009

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
In the arXiv:2305.13951 paper on page 21 is this: "The q-expansion of y coincides with the sequence A123633 in the OEIS". - Michael Somos, May 26 2023

Examples

			G.f. = q - 3*q^2 + 3*q^3 + 5*q^4 - 18*q^5 + 15*q^6 + 24*q^7 - 75*q^8 + 57*q^9 + ...
		

Crossrefs

Programs

  • Magma
    M := Basis(ModularForms(Gamma1(6), 1), 43); M1 := M[1]; M2 := M[2]; A := M2/(M1 + 2*M2); A; /* Michael Somos, May 26 2023 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q / (QPochhammer[ q^3, q^6]^3 / QPochhammer[ q, q^2])^3, {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
    a[ n_] := SeriesCoefficient[ q (Product[ 1 - q^k, {k, 1, n, 2}] / Product[ 1 - q^k, {k, 3, n, 6}]^3)^3, {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^3 * (eta(x^6 + A) / eta(x^3 + A))^9, n))};
    

Formula

Expansion of q / (chi(-q^3)^3 / chi(-q))^3 in powers of q where chi() is a Ramanujan theta function.
Euler transform of period 6 sequence [ -3, 0, 6, 0, -3, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v)= u^2 - v - u*v * (6 + 8*v).
G.f.: x * (Product_{k>0} (1 - x^(2*k - 1)) / (1 - x^(6*k - 3))^3 )^3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (1 / 8) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128642.
A128636(n) = a(n) unless n = 0. Convolution inverse of A105559.
Convolution cube of A092848.
Convolution with A123330 is A093829. - Michael Somos, May 26 2023

A128643 Expansion of (b(q^2) / b(q))^3 in powers of q where b() is a cubic AGM function.

Original entry on oeis.org

1, 9, 45, 171, 549, 1566, 4095, 10008, 23157, 51201, 108918, 224100, 447831, 872118, 1659672, 3093498, 5658453, 10173762, 18006021, 31408092, 54053190, 91869192, 154331028, 256447080, 421789671, 687086127, 1109128014, 1775103507
Offset: 0

Views

Author

Michael Somos, Mar 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 9*q + 45*q^2 + 171*q^3 + 549*q^4 + 1566*q^5 + 4095*q^6 + 10008*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3, q^6] / QPochhammer[ q, q^2]^3)^3, {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^2 + A) / eta(x + A))^3 * eta(x^3 + A) / eta(x^6 + A))^3, n))}

Formula

Expansion of (chi(-q^3) / chi(-q)^3)^3 in powers of q where chi() is a Ramanujan theta function.
Expansion of ((eta(q^2) / eta(q))^3 * (eta(q^3) / eta(q^6)))^3 in powers of q.
Euler transform of period 6 sequence [ 9, 0, 6, 0, 9, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (1 - v) * (1 + 8*u) + (u - v)^2.
G.f.: (Product_{k>0} (1 + x^k) / (1 + x^(3*k))^3)^3
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (1 / 8) g(t) where q = exp(2 Pi i t) and g() is g.f. for A105559.
a(n) = 9 * A128638(n) unless n = 0. -4*a(n) = A193522(2*n). Convolution inverse of A128642.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (8 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 27 2019
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 1/4 + (1/8)*sqrt(3) + (1/8)*sqrt(9+6*sqrt(3)). - Simon Plouffe, Mar 04 2021
Showing 1-2 of 2 results.