A128643 Expansion of (b(q^2) / b(q))^3 in powers of q where b() is a cubic AGM function.
1, 9, 45, 171, 549, 1566, 4095, 10008, 23157, 51201, 108918, 224100, 447831, 872118, 1659672, 3093498, 5658453, 10173762, 18006021, 31408092, 54053190, 91869192, 154331028, 256447080, 421789671, 687086127, 1109128014, 1775103507
Offset: 0
Keywords
Examples
1 + 9*q + 45*q^2 + 171*q^3 + 549*q^4 + 1566*q^5 + 4095*q^6 + 10008*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3, q^6] / QPochhammer[ q, q^2]^3)^3, {q, 0, n}]
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^2 + A) / eta(x + A))^3 * eta(x^3 + A) / eta(x^6 + A))^3, n))}
Formula
Expansion of (chi(-q^3) / chi(-q)^3)^3 in powers of q where chi() is a Ramanujan theta function.
Expansion of ((eta(q^2) / eta(q))^3 * (eta(q^3) / eta(q^6)))^3 in powers of q.
Euler transform of period 6 sequence [ 9, 0, 6, 0, 9, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (1 - v) * (1 + 8*u) + (u - v)^2.
G.f.: (Product_{k>0} (1 + x^k) / (1 + x^(3*k))^3)^3
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (1 / 8) g(t) where q = exp(2 Pi i t) and g() is g.f. for A105559.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (8 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 27 2019
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 1/4 + (1/8)*sqrt(3) + (1/8)*sqrt(9+6*sqrt(3)). - Simon Plouffe, Mar 04 2021
Comments