cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128643 Expansion of (b(q^2) / b(q))^3 in powers of q where b() is a cubic AGM function.

Original entry on oeis.org

1, 9, 45, 171, 549, 1566, 4095, 10008, 23157, 51201, 108918, 224100, 447831, 872118, 1659672, 3093498, 5658453, 10173762, 18006021, 31408092, 54053190, 91869192, 154331028, 256447080, 421789671, 687086127, 1109128014, 1775103507
Offset: 0

Views

Author

Michael Somos, Mar 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 9*q + 45*q^2 + 171*q^3 + 549*q^4 + 1566*q^5 + 4095*q^6 + 10008*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^3, q^6] / QPochhammer[ q, q^2]^3)^3, {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^2 + A) / eta(x + A))^3 * eta(x^3 + A) / eta(x^6 + A))^3, n))}

Formula

Expansion of (chi(-q^3) / chi(-q)^3)^3 in powers of q where chi() is a Ramanujan theta function.
Expansion of ((eta(q^2) / eta(q))^3 * (eta(q^3) / eta(q^6)))^3 in powers of q.
Euler transform of period 6 sequence [ 9, 0, 6, 0, 9, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (1 - v) * (1 + 8*u) + (u - v)^2.
G.f.: (Product_{k>0} (1 + x^k) / (1 + x^(3*k))^3)^3
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (1 / 8) g(t) where q = exp(2 Pi i t) and g() is g.f. for A105559.
a(n) = 9 * A128638(n) unless n = 0. -4*a(n) = A193522(2*n). Convolution inverse of A128642.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (8 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 27 2019
Empirical: Sum_{n>=0} a(n)/exp(2*Pi*n) = 1/4 + (1/8)*sqrt(3) + (1/8)*sqrt(9+6*sqrt(3)). - Simon Plouffe, Mar 04 2021