cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128652 Number of square permutations of length n.

Original entry on oeis.org

1, 2, 6, 24, 104, 464, 2088, 9392, 42064, 187296, 828776, 3644912, 15937776, 69317984, 300009744, 1292654304, 5547021728, 23715100480, 101046014952, 429209373296, 1817975905456, 7680278380512, 32368750662320
Offset: 1

Views

Author

Ralf Stephan, May 08 2007

Keywords

Programs

  • Mathematica
    a[1] = 1; a[n_] := 2(n+2) * 4^(n-3) - 4(2n-5) * Binomial[2n-6, n-3];
    Array[a, 30] (* Jean-François Alcover, Jul 22 2018 *)
  • PARI
    a(n) = if(n<=1,n,2*(n+2) * 4^(n-3) - 4*(2*n-5) * binomial(2*n-6,n-3)); /* Joerg Arndt, Jun 21 2011 */

Formula

a(n) = 2*(n+2) * 4^(n-3) - 4*(2*n-5) * C(2*n-6,n-3) for n>=2, a(1)=1.
G.f.: x*(1-6*x+10*x^2-4*x^2*sqrt(1-4*x))/(1-4*x)^2 (See theorem 3.1 in Albert et al. reference). [Joerg Arndt, Jun 21 2011]
Conjecture: +(n-3)*(n-8)*a(n) +2*(-4*n^2+43*n-96)*a(n-1) +8*(2*n-7)*(n-7)*a(n-2)=0. - R. J. Mathar, Oct 16 2017