cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A164991 Number of triangular involutions of n. A triangular involution is a square involution with at most three faces.

Original entry on oeis.org

1, 1, 3, 6, 13, 26, 54, 108, 221, 442, 898, 1796, 3634, 7268, 14668, 29336, 59101, 118202, 237834, 475668, 956198, 1912396, 3841588, 7683176, 15425138, 30850276, 61908564, 123817128, 248377156, 496754312
Offset: 1

Views

Author

Simone Rinaldi (rinaldi(AT)unisi.it), Sep 04 2009

Keywords

Comments

The sequence 2^(n+1) - binomial(n, floor(n/2)), which begins 1,3,6,... has Hankel transform (-1)^n*(2*n+1) (A157142). - Paul Barry, Nov 03 2010
For n >= 2 also row sums of A258445. - Wolfdieter Lang, Jun 27 2015

References

  • F. Disanto, A. Frosini, S. Rinaldi, Square Involutions, Proceedings of Permutation Patterns, July, 13-17 2009, Florence.
  • T. Mansour, S. Severini, Grid polygons from permutations and their enumeration by the kernel method, 19th Conference on Formal Power Series and Algebraic Combinatorics, Tianjin, China, July 2-6, 2007.

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[2^(n-1)-Binomial[n-2,Floor[(n-2)/2]],{n,2,30}]] (* Harvey P. Dale, Dec 26 2015 *)
  • PARI
    a(n) =  2^(n-1) - binomial(n-2, (n-2)\2) \\ Michel Marcus, May 27 2013

Formula

a(n) = 2^(n-1) - binomial(n-2, floor((n-2)/2)) for n>1, a(1)=1.
From Wolfdieter Lang, Jun 27 2015: (Start)
a(n) = Sum_{k = 1..2*n-3} A258445(n-1, k), n >= 2.
a(2*k+1) = 4*Sum_{j = 0..(k-2)} binomial(2*k-1,j) + 3*binomial(2*k-1,k-1), k >= 1.
a(2*k) = 4*Sum_{j = 0..(k-2)} binomial(2*(k-1),j) + binomial(2*(k-1),k-1), k >= 1. (End)
(-n+1)*a(n) + 2*(n-1)*a(n-1) + 4*(n-4)*a(n-2) + 8*(-n+4)*a(n-3) = 0. - R. J. Mathar, Aug 09 2017

A164990 Number of square involutions of n.

Original entry on oeis.org

1, 2, 4, 10, 22, 52, 114, 260, 564, 1256, 2698, 5908, 12588, 27224, 57620, 123432, 259816, 552400, 1157466, 2446004, 5105532, 10735352, 22334524, 46766200, 97021272, 202431152, 418935364, 871425160, 1799558584
Offset: 1

Views

Author

Simone Rinaldi (rinaldi(AT)unisi.it), Sep 04 2009

Keywords

Examples

			a(5)=22, in fact the 22 square involutions of 5 are given by all the involutions of 5, which are 26, minus 14325, 15342, 52341, 42315 which are not square.
		

References

  • F. Disanto, A. Frosini, S. Rinaldi, Square Involutions, Proceedings of Permutation Patterns, July 13-17, 2009, Florence.
  • T. Mansour, S. Severini, Grid polygons from permutations and their enumeration by the kernel method, 19th Conference on Formal Power Series and Algebraic Combinatorics, Tianjin, China, July 2-6, 2007.

Crossrefs

Cf. A128652.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( x*(1-x)^2/(1-2*x)^2 - x^3/((1-2*x)*Sqrt(1-4*x^2)) )); // G. C. Greubel, Nov 25 2018
    
  • Mathematica
    Rest[CoefficientList[Series[x(1-x)^2/(1-2x)^2 - x^3/((1-2x) Sqrt[1-4x^2]), {x, 0, 29}], x]] (* Michael De Vlieger, Nov 25 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(1-x)^2/(1-2*x)^2 - x^3/((1-2*x)*sqrt(1- 4*x^2))) \\ G. C. Greubel, Nov 25 2018
    
  • Sage
    s=(x*(1-x)^2/(1-2*x)^2 -x^3/((1-2*x)*sqrt(1-4*x^2))).series(x, 30);  a= s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 25 2018

Formula

a(n) = (n+2)*2^(n-3) - (n-2)*C(n-3,(n-3)/2), n > 1.
G.f.: x*(1-x)^2/(1-2*x)^2 - x^3/((1-2*x)*sqrt(1-4*x^2)).
(n-3)*(n-8)*a(n) + 2*(-n^2 + 10*n - 20)*a(n-1) + 4*(-n^2 + 12*n - 31)*a(n-2) + 8*(n-4)*(n-7)*a(n-3) = 0.- R. J. Mathar, Jul 24 2012
Showing 1-2 of 2 results.