A258445 Irregular triangle related to Pascal's triangle.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 4, 4, 6, 4, 4, 1, 1, 1, 1, 5, 5, 10, 10, 10, 5, 5, 1, 1, 1, 1, 6, 6, 15, 15, 20, 15, 15, 6, 6, 1, 1, 1, 1, 7, 7, 21, 21, 35, 35, 35, 21, 21, 7, 7, 1, 1, 1, 1, 8, 8, 28, 28, 56, 56, 70, 56, 56, 28, 28, 8, 8, 1, 1, 1, 1, 9, 9, 36, 36, 84, 84, 126, 126, 126, 84, 84, 36, 36, 9, 9, 1, 1
Offset: 1
Examples
The irregular triangle T(n, k) starts: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1: 1 2: 1 1 1 3: 1 1 2 1 1 4: 1 1 3 3 3 1 1 5: 1 1 4 4 6 4 4 1 1 6: 1 1 5 5 10 10 10 5 5 1 1 7: 1 1 6 6 15 15 20 15 15 6 6 1 1 8: 1 1 7 7 21 21 35 35 35 21 21 7 7 1 1 9: 1 1 8 8 28 28 56 56 70 56 56 28 28 8 8 1 1 ... Reformatted. - _Wolfdieter Lang_, Jun 26 2015
Links
- Miguel Angel Amela, Fractal Antenna
- Miguel Angel Amela, Pascal Wave
- Craig Knecht, Pascal's Neighborhood
- Craig Knecht, Pascal Surface
- Craig Knecht, Pascal Cylinders
- Wikipedia, Water Retention on Mathematical Surfaces
Programs
-
PARI
tabf(nn) = {for (n=1, nn, for (k=1, 2*n-1, kk = (k+1)\2; if (k%2, v = min(binomial(n-1, kk-1), min(binomial(n, kk-1), binomial(n, kk))), v = min(binomial(n, kk), min(binomial(n-1, kk-1), binomial(n-1, kk)))); print1(v, ", ");); print(););} \\ Michel Marcus, Jun 16 2015
Formula
T(n, 2*m) = Min(P(n-1, m-1), P(n-1, m), P(n, m)) with P(n, k) = A007318(n, k) = binomial(n, k), for m = 1, 2, ..., n-1, and
T(n, 2*m-1) = Min(P(n-1, m-1), P(n, m-1), P(n, m)) for m = 1, 2, ..., n. See the program by Michel Marcus. - Wolfdieter Lang, Jun 27 2015
Comments