cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128674 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the m-th alternating generalized harmonic number H'(m,k), for k = 4.

Original entry on oeis.org

42, 110, 156, 272, 294, 342, 506, 812, 930, 1210, 1332, 1640, 1806, 2028, 2058, 2162, 2756, 3422, 3660, 4422, 4624, 4970, 5256, 6162, 6498, 6806, 7832, 9312, 10100, 10506, 11342, 11638, 11772, 12656, 13310, 14406, 16002, 17030, 18632, 19182, 22052, 22650, 23548, 24492, 26364
Offset: 1

Views

Author

Alexander Adamchuk, Mar 20 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Sequence contains geometric progressions of the form (p-1)*p^k for k > 0 and some prime p > 5. Note the factorization of initial terms of {a(n)} = {6*7, 10*11, 12*13, 16*17, 6*7^2, 18*19, 22*23, 28*29, 30*31, 10*11*2, 36*37, 40*41, 42*43, 12*13^2, 6*7^3, ...}. See more details in Comments at A128672 and A125581.

Crossrefs

Programs

  • Mathematica
    k=4; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n,1,2000} ]

Extensions

Edited and extended by Max Alekseyev, May 09 2010