cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A128704 Number of groups of order A128703(n).

Original entry on oeis.org

2, 1, 1, 5, 2, 1, 3, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 15, 1, 4, 1, 2, 2, 1, 2, 1, 7, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 2, 1, 2, 55, 2, 1, 1, 2, 1, 2, 15, 1, 2, 1, 1, 2, 4, 1, 2, 1, 1, 5, 2, 2, 1, 1, 1, 1, 4, 1, 2, 1, 1, 21, 1, 1, 1, 2
Offset: 1

Views

Author

Klaus Brockhaus, Mar 26 2007

Keywords

Comments

Number of groups for orders of form 5^k*p, where 1 <= k <= 5 and p is a prime different from 5.
The groups of these orders (up to A128703(69556991) = 5368708945 in version V2.13-4) form a class contained in the Small Groups Library of MAGMA.

Examples

			A128703(20) = 275 and there are 4 groups of order 275 (A000001(275) = 4), hence a(20) = 4.
		

Crossrefs

Cf. A000001 (number of groups of order n), A128703 (numbers of form 5^k*p, 1<=k<=5, p!=5 prime), A128604 (number of groups for orders that divide p^6, p prime), A128644 (number of groups for orders that have at most 3 prime factors), A128645 (number of groups for orders of form 2^k*p, 1<=k<=8, p>2 prime), A128694 (number of groups for orders of form 3^k*p, 1<=k<=6, p!=3 prime).

Programs

  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n): n in [ h: h in [1..2000] | #t eq 2 and ((t[1, 1] lt 5 and t[1, 2] eq 1 and t[2, 1] eq 5 and t[2, 2] le 5) or (t[1, 1] eq 5 and t[1, 2] le 5 and t[2, 2] eq 1)) where t is Factorization(h) ] ];

Formula

a(n) = A000001(A128703(n)).

A128693 Numbers of the form 3^k*p, where 1 <= k <= 6 and p is a prime different from 3.

Original entry on oeis.org

6, 15, 18, 21, 33, 39, 45, 51, 54, 57, 63, 69, 87, 93, 99, 111, 117, 123, 129, 135, 141, 153, 159, 162, 171, 177, 183, 189, 201, 207, 213, 219, 237, 249, 261, 267, 279, 291, 297, 303, 309, 321, 327, 333, 339, 351, 369, 381, 387, 393, 405, 411, 417, 423, 447
Offset: 1

Views

Author

Klaus Brockhaus, Mar 26 2007

Keywords

Comments

Auxiliary sequence for A128694 which gives the number of groups of order a(n).
a(n) is a subset of the composite numbers m having the property that tau(3*m)=tau(m)+2, where tau(m)=A000005(m) (the number of divisors of m). All primes except 3 satisfy this property. - Gary Detlefs, Jan 25 2019

Examples

			135 = 3^3*5 is a term.
		

Crossrefs

Cf. A128694.

Programs

  • Magma
    [ n: n in [1..450] | #t eq 2 and ((t[1, 1] eq 2 and t[1, 2] eq 1 and t[2, 1] eq 3 and t[2, 2] le 6) or (t[1, 1] eq 3 and t[1, 2] le 6 and t[2, 2] eq 1)) where t is Factorization(n) ];

A128706 Number of groups of order A128705(n).

Original entry on oeis.org

2, 2, 1, 1, 1, 5, 1, 1, 6, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 15, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 19, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 2, 2, 1, 1, 1, 1, 2, 1, 5, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Klaus Brockhaus, Mar 26 2007

Keywords

Comments

Number of groups for orders of form 7^k*p, where 1 <= k <= 4 and p is a prime different from 7.
The groups of these orders (up to A128705(64633879) = 7516192523 in version V2.13-4) form a class contained in the Small Groups Library of MAGMA.

Examples

			A128705(30) = 686 and there are 15 groups of order 686 (A000001(686) = 15), hence a(30) = 15.
		

Crossrefs

Cf. A000001 (number of groups of order n), A128705 (numbers of form 7^k*p, 1<=k<=4, p!=7 prime), A128604 (number of groups for orders that divide p^6, p prime), A128644 (number of groups for orders that have at most 3 prime factors), A128645 (number of groups for orders of form 2^k*p, 1<=k<=8, p>2 prime), A128694 (number of groups for orders of form 3^k*p, 1<=k<=6, p!=3 prime), A128704 (number of groups for orders of form 5^k*p, 1<=k<=5, p!=5 prime).

Programs

  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n): n in [ h: h in [1..3500] | #t eq 2 and ((t[1, 1] lt 7 and t[1, 2] eq 1 and t[2, 1] eq 7 and t[2, 2] le 4) or (t[1, 1] eq 7 and t[1, 2] le 4 and t[2, 2] eq 1)) where t is Factorization(h) ] ];

Formula

a(n) = A000001(A128705(n)).
Showing 1-3 of 3 results.