A128695 Number of compositions of n with parts in N which avoid the adjacent pattern 111.
1, 1, 2, 3, 7, 13, 24, 46, 89, 170, 324, 618, 1183, 2260, 4318, 8249, 15765, 30123, 57556, 109973, 210137, 401525, 767216, 1465963, 2801115, 5352275, 10226930, 19541236, 37338699, 71345449, 136324309, 260483548, 497722578, 951030367
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jul 06 2020: (Start) The a(0) = 1 through a(5) = 13 compositions: () (1) (2) (3) (4) (5) (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (3,1) (3,2) (1,1,2) (4,1) (1,2,1) (1,1,3) (2,1,1) (1,2,2) (1,3,1) (2,1,2) (2,2,1) (3,1,1) (1,1,2,1) (1,2,1,1) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- S. Heubach and T. Mansour, Enumeration of 3-letter patterns in compositions, arXiv:math/0603285 [math.CO], 2006
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Crossrefs
Column k=0 of A232435.
The matching version is A335464.
Contiguously (1,1)-avoiding compositions is A003242.
Contiguously (1,1)-matching compositions are A261983.
Compositions with some part > 2 are A008466
Compositions by number of adjacent equal parts are A106356.
Compositions where each part is adjacent to an equal part are A114901.
Compositions with adjacent parts coprime are A167606.
Compositions with equal parts contiguous are A274174.
Patterns contiguously matched by compositions are A335457.
Patterns contiguously matched by a given partition are A335516.
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, add(`if`(abs(t)<>j, b(n-j, j), `if`(t=-j, 0, b(n-j, -j))), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..40); # Alois P. Heinz, Nov 23 2013
-
Mathematica
nn=33;CoefficientList[Series[1/(1-Sum[(x^i+x^(2i))/(1+x^i+x^(2i)),{i,1,nn}]),{x,0,nn}],x] (* Geoffrey Critzer, Nov 23 2013 *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,x_,x_,_}]&]],{n,13}] (* Gus Wiseman, Jul 06 2020 *)
Formula
G.f.: 1/(1-Sum(i>=1, x^i*(1+x^i)/(1+x^i*(1+x^i)) ) ).
a(n) ~ c * d^n, where d is the root of the equation Sum_{k>=1} 1/(d^k + 1/(1 + d^k)) = 1, d=1.9107639262818041675000243699745706859615884029961947632387839..., c=0.4993008137128378086219448701860326113802027003939127932922782... - Vaclav Kotesovec, May 01 2014, updated Jul 07 2020