cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128701 Highly abundant numbers that are not products of consecutive primes with nonincreasing exponents, i.e., that are not of the form n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2>=e_3>=...>=e_p.

Original entry on oeis.org

1, 3, 10, 18, 20, 42, 84, 90, 108, 168, 300, 336, 504, 540, 600, 630, 660, 1008, 1200, 1560, 1620, 1980, 2100, 2340, 2400, 3024, 3120, 3240, 3780, 3960, 4200, 4680, 5880, 6120, 6240, 7920, 8400, 8820
Offset: 1

Views

Author

Ant King, Mar 28 2007

Keywords

Comments

This is the subsequence of those highly abundant numbers (A002093) that have a different canonical structure to the superabundant numbers (A004394), the colossally abundant numbers (A004490), the highly composite numbers (A002182) and the superior highly composite numbers (A002201).

Examples

			As 10 is the third highly abundant number that cannot be expressed as a product of consecutive primes with nonincreasing exponents, then a(3)=10.
		

Crossrefs

Programs

  • Mathematica
    hadata1=FoldList[Max,1,Table[DivisorSigma[1,n],{n,2,10000}]]; data1=Flatten[Position[hadata1,#,1,1]&/@Union[hadata1]];primefactorlist[1]={1};primefactorlist[k_]:=First[Transpose[FactorInteger[k]]];exponentlist[1]={1};exponentlist[k_]:=Last[Transpose[FactorInteger[k]]];g[k_List]:=If[MemberQ[Table[k[[i]]<= k[[i-1]],{i,1,Length[k]}],False],False,True];h[k_]:=If[primefactorlist[k]==(Prime[ # ]&/@Range[Length[primefactorlist[k]]]),True,False];Select[data1,Or[ ! h[ # ],!g[exponentlist[ # ]]]&]
    seq = {1}; sm = 0; Do[f = FactorInteger[n]; p = f[[;; , 1]]; e = f[[;; , 2]]; s = Times @@ ((p^(e + 1) - 1)/(p - 1)); If[s > sm, sm = s; m = Length[p]; If[p[[-1]] != Prime[m] || (m > 1 && ! AllTrue[Differences[e], # <= 0 &]), AppendTo[seq, n]]], {n, 2, 10^4}]; seq (* Amiram Eldar, Jun 18 2019 *)

Formula

The highly abundant numbers (A002093) are those values of n for which sigma(n)>sigma(m) for all mA000203(n).