A128701 Highly abundant numbers that are not products of consecutive primes with nonincreasing exponents, i.e., that are not of the form n=2^{e_2} * 3^{e_3} * ...* p^{e_p}, with e_2>=e_3>=...>=e_p.
1, 3, 10, 18, 20, 42, 84, 90, 108, 168, 300, 336, 504, 540, 600, 630, 660, 1008, 1200, 1560, 1620, 1980, 2100, 2340, 2400, 3024, 3120, 3240, 3780, 3960, 4200, 4680, 5880, 6120, 6240, 7920, 8400, 8820
Offset: 1
Keywords
Examples
As 10 is the third highly abundant number that cannot be expressed as a product of consecutive primes with nonincreasing exponents, then a(3)=10.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..8404
- L. Alaoglu and P. Erdős, On highly composite and similar numbers, Trans. Amer. Math. Soc., 56 (1944), 448-469.
- Jeffrey C. Lagarias, An Elementary Problem Equivalent to the Riemann Hypothesis, arXiv:math/0008177 [math.NT], 2000-2001.
- Jeffrey C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, American Mathematical Monthly 109 (2002), pp. 534-543.
- Wikipedia, Highly Abundant Numbers.
Programs
-
Mathematica
hadata1=FoldList[Max,1,Table[DivisorSigma[1,n],{n,2,10000}]]; data1=Flatten[Position[hadata1,#,1,1]&/@Union[hadata1]];primefactorlist[1]={1};primefactorlist[k_]:=First[Transpose[FactorInteger[k]]];exponentlist[1]={1};exponentlist[k_]:=Last[Transpose[FactorInteger[k]]];g[k_List]:=If[MemberQ[Table[k[[i]]<= k[[i-1]],{i,1,Length[k]}],False],False,True];h[k_]:=If[primefactorlist[k]==(Prime[ # ]&/@Range[Length[primefactorlist[k]]]),True,False];Select[data1,Or[ ! h[ # ],!g[exponentlist[ # ]]]&] seq = {1}; sm = 0; Do[f = FactorInteger[n]; p = f[[;; , 1]]; e = f[[;; , 2]]; s = Times @@ ((p^(e + 1) - 1)/(p - 1)); If[s > sm, sm = s; m = Length[p]; If[p[[-1]] != Prime[m] || (m > 1 && ! AllTrue[Differences[e], # <= 0 &]), AppendTo[seq, n]]], {n, 2, 10^4}]; seq (* Amiram Eldar, Jun 18 2019 *)
Formula
The highly abundant numbers (A002093) are those values of n for which sigma(n)>sigma(m) for all mA000203(n).
Comments