cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128720 Number of paths in the first quadrant from (0,0) to (n,0) using steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).

Original entry on oeis.org

1, 1, 3, 6, 16, 40, 109, 297, 836, 2377, 6869, 20042, 59071, 175453, 524881, 1579752, 4780656, 14536878, 44394980, 136107872, 418757483, 1292505121, 4001039563, 12418772656, 38641790001, 120510911885, 376628460529, 1179376013552, 3699860515924, 11626784875214
Offset: 0

Views

Author

Emeric Deutsch, Mar 30 2007, revised Sep 03 2007

Keywords

Comments

Points of two kinds are placed on a line: light points having weight 1 and heavy points having weight 2. Number of configurations of points of total weight n, with some of the light points being paired off by nonintersecting arcs.
Number of skew Dyck paths of semilength n having no UUU's. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps. Example: a(3)=6 because we have UDUDUD, UDUUDD, UDUUDL, UUDDUD, UUDUDD and UUDUDL. a(n)=A128719(n,0). a(n)=A059397(n,n). a(n)=A132276(n,0).
Hankel transform is the (1,3) Somos-4 sequence A174168. - Paul Barry, Mar 10 2010
First column of the Riordan matrix A132276. - Emanuele Munarini, May 05 2011

Examples

			a(3)=6 because we have hhh, hH, Hh, hUD, UhD and UDh.
G.f. = 1 + x + 3*x^2 + 6*x^3 + 16*x^4 + 40*x^5 + 109*x^6 + 297*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a[0]:=1: a[1]:=1: for n from 2 to 30 do a[n]:=a[n-1]+a[n-2]+add(a[j]*a[n-2-j], j=0..n-2) end do: seq(a[n],n=0..30); G:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: Gser:=series(G,z=0,33): seq(coeff(Gser,z,n),n=0..30);
  • Mathematica
    Table[Sum[Binomial[2k,k]/(k+1)Sum[Binomial[n-j,2k]Binomial[n-j-2k,j],{j,0,n/2}],{k,0,n/2}],{n,0,12}] (* Emanuele Munarini, May 05 2011 *)
  • Maxima
    makelist(sum(binomial(2*k,k)/(k+1)*sum(binomial(n-j,2*k)*binomial(n-j-2*k,j),j,0,n/2),k,0,n/2),n,0,12); /* Emanuele Munarini, May 05 2011 */

Formula

a(n) = Sum_{j=0..floor(n/2)} binomial(n-j, j)*m(n-2j), where m(k)=A001006(k) are the Motzkin numbers.
G.f. = G satisfies z^2*G^2 - (1-z-z^2)*G + 1 = 0.
G.f. = c(z^2/(1-z-z^2)^2)/(1-z-z^2), where c(z) = (1-sqrt(1-4z))/(2z) is the Catalan function.
a(n) = a(n-1) + a(n-2) + Sum_{j=0..n-2} a(j)*a(n-2-j), a(0) = a(1) = 1.
G.f.: (1/(1-x-x^2))*c(x^2/(1-x-x^2)^2) = (1/(1-x^2))*m(x/(1-x^2)), c(x) the g.f. of A000108, m(x) the g.f. of A001006. - Paul Barry, Mar 18 2010
Let A(x) be the g.f., then B(x) = 1 + x*A(x) = 1 + 1*x + 1*x^2 + 3*x^3 + 6*x^4 + ... = 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1+x-x^2) (continued fraction); more generally B(x)=C(x/(1+x-x^2)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(n) = Sum_{k=0..floor(n/2)} (binomial(2*k,k)/(k+1))*Sum_{j=0..floor(n/2)} binomial(n-j, 2*k)*binomial(n-j-2*k, j). - Emanuele Munarini, May 05 2011
D-finite with recurrence: (n+2)*a(n) + (-2*n-1)*a(n-1) + 5*(-n+1)*a(n-2) + (2*n-5)*a(n-3) + (n-4)*a(n-4) = 0. - R. J. Mathar, Dec 03 2012
G.f.: (1 - x - x^2 - sqrt(1 - 2*x - 5*x^2 + 2*x^3 + x^4))/(2*x^2) = 1/Q(0), where Q(k) = 1 - x - x^2 - x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
a(n) ~ sqrt(78+22*sqrt(13)) * ((3+sqrt(13))/2)^n / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014