cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128742 Number of compositions of n which avoid the pattern 112.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 24, 43, 78, 142, 256, 463, 838, 1513, 2735, 4944, 8931, 16139, 29164, 52693, 95213, 172042, 310855, 561682, 1014898, 1833794, 3313454, 5987026, 10817836, 19546558, 35318325, 63816013, 115307993, 208347899, 376459955, 680218580, 1229074432
Offset: 0

Views

Author

Ralf Stephan, May 08 2007

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t, l) option remember; `if`(n=0, 1, add(
          b(n-j, is(j=l), j), j=1..min(n, `if`(t, l, n))))
        end:
    a:= n-> b(n, false, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 24 2017
  • Mathematica
    b[n_, t_, l_] := b[n, t, l] = If[n == 0, 1, Sum[b[n - j, j == l, j], {j, 1, Min[n, If[t, l, n]]}]];
    a[n_] := b[n, False, 0];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, x^k*prod(j=1, k-1, 1-x^(2*j))))) \\ Seiichi Manyama, Jan 13 2022
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sum(k=0, N, (-1)^k*x^k^2/prod(j=1, k, 1-x^(2*j-1)))) \\ Seiichi Manyama, Jan 13 2022

Formula

G.f.: 1/( 1 - Sum_{j>=1} x^j*Product_{i=1..j-1} (1-x^(2*i)) ).
G.f.: 1/( Sum_{k>=0} (-1)^k * x^(k^2) / Product_{j=1..k} (1-x^(2*j-1)) ). - Seiichi Manyama, Jan 13 2022