A128742 Number of compositions of n which avoid the pattern 112.
1, 1, 2, 4, 7, 13, 24, 43, 78, 142, 256, 463, 838, 1513, 2735, 4944, 8931, 16139, 29164, 52693, 95213, 172042, 310855, 561682, 1014898, 1833794, 3313454, 5987026, 10817836, 19546558, 35318325, 63816013, 115307993, 208347899, 376459955, 680218580, 1229074432
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- S. Heubach and T. Mansour, Enumeration of 3-letter patterns in combinations, arXiv:math/0603285 [math.CO], 2006.
Programs
-
Maple
b:= proc(n, t, l) option remember; `if`(n=0, 1, add( b(n-j, is(j=l), j), j=1..min(n, `if`(t, l, n)))) end: a:= n-> b(n, false, 0): seq(a(n), n=0..40); # Alois P. Heinz, Oct 24 2017
-
Mathematica
b[n_, t_, l_] := b[n, t, l] = If[n == 0, 1, Sum[b[n - j, j == l, j], {j, 1, Min[n, If[t, l, n]]}]]; a[n_] := b[n, False, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
-
PARI
my(N=40, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, x^k*prod(j=1, k-1, 1-x^(2*j))))) \\ Seiichi Manyama, Jan 13 2022
-
PARI
my(N=40, x='x+O('x^N)); Vec(1/sum(k=0, N, (-1)^k*x^k^2/prod(j=1, k, 1-x^(2*j-1)))) \\ Seiichi Manyama, Jan 13 2022
Formula
G.f.: 1/( 1 - Sum_{j>=1} x^j*Product_{i=1..j-1} (1-x^(2*i)) ).
G.f.: 1/( Sum_{k>=0} (-1)^k * x^(k^2) / Product_{j=1..k} (1-x^(2*j-1)) ). - Seiichi Manyama, Jan 13 2022