A128743 Number of UU's (i.e., doublerises) in all skew Dyck paths of semilength n.
0, 0, 2, 13, 69, 346, 1700, 8286, 40264, 195488, 949302, 4613025, 22436997, 109240038, 532410060, 2597468685, 12684628125, 62002335160, 303332650190, 1485213237135, 7277719953415, 35687662907750, 175120787451540
Offset: 0
Keywords
Examples
a(2)=2 because the paths of semilength 2 are UDUD, UUDD and UUDL, having altogether 2 UU's.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
Crossrefs
Cf. A128718.
Programs
-
Maple
G:=(1-4*z+z^2+(z-1)*sqrt(1-6*z+5*z^2))/2/z/sqrt(1-6*z+5*z^2): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..25);
-
Mathematica
CoefficientList[Series[(1-4*x+x^2+(x-1)*Sqrt[1-6*x+5*x^2])/2/x/Sqrt[1-6*x+5*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
z='z+O('z^50); concat([0,0], Vec((1-4*z+z^2+(z-1)*sqrt(1-6*z+5*z^2))/(2*z*sqrt(1-6*z+5*z^2)))) \\ G. C. Greubel, Mar 20 2017
Formula
a(n) = Sum_{k=0..n-1} k*A128718(n,k).
G.f.: (1-4*z+z^2+(z-1)*sqrt(1-6*z+5*z^2))/(2*z*sqrt(1-6*z+5*z^2)).
a(n) ~ 3*5^(n-1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: (n+1)*(n-2)^2*a(n) -(n-1)*(6*n^2-15*n+4)*a(n-1) +5*(n-2)*(n-1)^2*a(n-2)=0. - R. J. Mathar, Jun 17 2016
Conjecture verified using the differential equation 4*g(z)+(20*z^3+2*z^2-2*z)*g'(z)+(25*z^4-15*z^3)*g''(z)+(5*z^5-6*z^4+z^3)*g'''(z)=0 satisfied by the G.f. - Robert Israel, Dec 25 2017
Comments