A128758 Expansion of q^(-1/3) * (eta(q^3) / eta(q))^4 in powers of q.
1, 4, 14, 36, 89, 196, 416, 828, 1600, 2972, 5390, 9504, 16436, 27828, 46364, 75960, 122772, 195728, 308430, 480456, 740921, 1131364, 1712348, 2569500, 3825641, 5652872, 8294612, 12089016, 17508609, 25204428, 36076540, 51355368, 72725909
Offset: 0
Keywords
Examples
G.f. = 1 + 4*x + 14*x^2 + 36*x^3 + 89*x^4 + 196*x^5 + 416*x^6 + 828*x^7 + ... G.f. = q + 4*q^4 + 14*q^7 + 36*q^10 + 89*q^13 + 196*q^16 + 416*q^19 + ...
References
- O. Kolberg, The coefficients of j(tau) modulo powers of 3, Acta Univ. Bergen., Series Math., Arbok for Universitetet I Bergen, Mat.-Naturv. Serie, 1962 No. 16, pp. 1-7. See v, page 1.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A112146.
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[Product[((1-x^(3*k)) / (1-x^k))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *) eta[q_]:= q^(1/24)*QPochhammer[q]; c:= q^(1/3)*(eta[q]/eta[q^3])^4; a:= CoefficientList[Series[1/c, {q,0,60}], q]; Table[a[[n]], {n,1,50}] (* G. C. Greubel, Jul 04 2018 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x + A))^4, n))};
Formula
Expansion of q^(-1/3) * (1/3) * c(q) / b(q) in powers of q where b(), c() are cubic AGM theta functions.
Euler transform of period 3 sequence [ 4, 4, 0, ...].
Given g.f. A(x), then B(q) = q*A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u+v)^3 - u*v * (1+3*u) * (1+3*v).
Given g.f. A(x), then B(q)= q*A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2 + w^2 + u*w - v - 9*v^2 * (u+w).
G.f.: (Product_{k>0} (1 + x^k + x^(2*k)) )^4.
9*a(n) = A112146(3*n + 1).
a(n) ~ exp(4*Pi*sqrt(n)/3) / (9*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
Comments