cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128758 Expansion of q^(-1/3) * (eta(q^3) / eta(q))^4 in powers of q.

Original entry on oeis.org

1, 4, 14, 36, 89, 196, 416, 828, 1600, 2972, 5390, 9504, 16436, 27828, 46364, 75960, 122772, 195728, 308430, 480456, 740921, 1131364, 1712348, 2569500, 3825641, 5652872, 8294612, 12089016, 17508609, 25204428, 36076540, 51355368, 72725909
Offset: 0

Views

Author

Michael Somos, Mar 24 2007

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 4*x + 14*x^2 + 36*x^3 + 89*x^4 + 196*x^5 + 416*x^6 + 828*x^7 + ...
G.f. = q + 4*q^4 + 14*q^7 + 36*q^10 + 89*q^13 + 196*q^16 + 416*q^19 + ...
		

References

  • O. Kolberg, The coefficients of j(tau) modulo powers of 3, Acta Univ. Bergen., Series Math., Arbok for Universitetet I Bergen, Mat.-Naturv. Serie, 1962 No. 16, pp. 1-7. See v, page 1.

Crossrefs

Cf. A112146.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1-x^(3*k)) / (1-x^k))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; c:= q^(1/3)*(eta[q]/eta[q^3])^4; a:= CoefficientList[Series[1/c, {q,0,60}], q]; Table[a[[n]], {n,1,50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x + A))^4, n))};

Formula

Expansion of q^(-1/3) * (1/3) * c(q) / b(q) in powers of q where b(), c() are cubic AGM theta functions.
Euler transform of period 3 sequence [ 4, 4, 0, ...].
Given g.f. A(x), then B(q) = q*A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u+v)^3 - u*v * (1+3*u) * (1+3*v).
Given g.f. A(x), then B(q)= q*A(q^3) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2 + w^2 + u*w - v - 9*v^2 * (u+w).
G.f.: (Product_{k>0} (1 + x^k + x^(2*k)) )^4.
9*a(n) = A112146(3*n + 1).
a(n) ~ exp(4*Pi*sqrt(n)/3) / (9*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Sep 07 2015