A128761 Number of compositions of n with parts in N which avoid the consecutive pattern 123.
1, 1, 2, 4, 8, 16, 31, 61, 119, 232, 453, 883, 1721, 3354, 6536, 12735, 24813, 48344, 94189, 183506, 357518, 696534, 1357019, 2643798, 5150746, 10034865, 19550268, 38088486, 74205248, 144569092, 281654211, 548727863, 1069049370, 2082756500
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- S. Heubach and T. Mansour, Enumeration of 3-letter patterns in combinations, arXiv:math/0603285 [math.CO], 2006.
Programs
-
Maple
b:= proc(n, t, l) option remember; `if`(n=0, 1, add( b(n-j, is(j>l), j), j=1..min(n, `if`(t, l, n)))) end: a:= n-> b(n, false, n): seq(a(n), n=0..35); # Alois P. Heinz, Oct 24 2017
-
Mathematica
b[n_, t_, l_] := b[n, t, l] = If[n == 0, 1, Sum[b[n - j, j > l, j], {j, 1, Min[n, If[t, l, n]]}]]; a[n_] := b[n, False, n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 14 2017, after Alois P. Heinz *)
Formula
The Heubach/Mansour paper has a complicated g.f.
a(n) ~ c * d^n, where d = 1.948232199887283224240693518762976752988220177086321158242512704029011807341..., c = 0.57609601848694597639954632728322472031509789101742496394456882851645843... - Vaclav Kotesovec, Sep 20 2019
Extensions
More terms from Vladeta Jovovic, Oct 03 2007