A271386 Discriminants of the polynomials T_n(x) = Product_{k=0..n} (x - k*(k + 1)/2).
1, 1, 36, 291600, 1851776640000, 23813032808678400000000, 1333916640950593574375424000000000000, 618764594221522786972353235328676003840000000000000000
Offset: 0
Keywords
Examples
The first few polynomials are: T_0(x) = x; T_1(x) = x^2 - x; T_2(x) = x^3 - 4*x^2 + 3*x; T_3(x) = x^4 - 10*x^3 + 27*x^2 - 18*x; T_4(x) = x^5 - 20*x^4 + 127*x^3 - 288*x^2 + 180*x;. T_5(x) = x^6 - 35*x^5 + 427*x^4 - 2193*x^3 + 4500*x^2 - 2700*x, etc. … a(3) = discriminant T_3(x) = 291600.
Links
- Ilya Gutkovskiy, Table of n, a(n) for n = 0..25
- Ilya Gutkovskiy, Polynomials T_n(x)
- Eric Weisstein's World of Mathematics, Triangular Number
Programs
-
Mathematica
Table[Discriminant[(-1/2)^n x Pochhammer[3/2 - Sqrt[1 + 8 x]/2, n] Pochhammer[(3 + Sqrt[1 + 8 x])/2, n], x], {n, 0, 7}]
-
PARI
a(n) = poldisc(prod(k=0, n, 'x - k*(k + 1)/2)); \\ Michel Marcus, Mar 01 2023
Comments