A128832 Number of n-tuples where each entry is chosen from the subsets of {1,2,3,4} such that the intersection of all n entries is empty.
1, 81, 2401, 50625, 923521, 15752961, 260144641, 4228250625, 68184176641, 1095222947841, 17557851463681, 281200199450625, 4501401006735361, 72040003462430721, 1152780773560811521, 18445618199572250625
Offset: 1
Examples
a(1) = (2^1 - 1)^4 = 1 because only one tuple of length one, namely ({}), has an empty intersection of its sole entry.
References
- Stanley, R. P.: Enumerative Combinatorics: Volume 1: Wadsworth & Brooks: 1986: p. 11
Links
- Index entries for linear recurrences with constant coefficients, signature (31,-310,1240,-1984,1024).
Programs
-
Maple
for k from 1 to 20 do (2^k-1)^4; od; with (combinat):seq(mul(stirling2(n,2),k=1..4),n=2..17); # Zerinvary Lajos, Dec 16 2007
-
Mathematica
LinearRecurrence[{31,-310,1240,-1984,1024},{1,81,2401,50625,923521},20] (* Harvey P. Dale, Mar 30 2019 *)
Formula
a(n) = (2^n - 1)^4.
G.f.: -x*(4*x+1)*(16*x^2+46*x+1)/((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(16*x-1)). [Colin Barker, Nov 17 2012]
Comments