cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128862 Numbers simultaneously triangular and centered triangular.

Original entry on oeis.org

1, 10, 136, 1891, 26335, 366796, 5108806, 71156485, 991081981, 13803991246, 192264795460, 2677903145191, 37298379237211, 519499406175760, 7235693307223426, 100780206894952201, 1403687203222107385, 19550840638214551186, 272308081731781609216
Offset: 1

Views

Author

Steven Schlicker, Apr 24 2007

Keywords

Comments

A129803 is an essentially identical sequence. - R. J. Mathar, Jun 13 2008

Examples

			a(2)=10 because 10 is the third triangular number and the fourth centered triangular number.
		

Crossrefs

Intersection of A000217 and A005448.

Programs

  • Maple
    CP := n -> 1+1/2*3*(n^2-n): N:=10: u:=2: v:=1: x:=3: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+3*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp;
  • Mathematica
    Rest@ CoefficientList[Series[x (1 - 5 x + x^2)/((1 - x) (1 - 14 x + x^2)), {x, 0, 19}], x] (* Michael De Vlieger, Jul 19 2023 *)

Formula

Define x(n) and y(n) by (3+sqrt(3))*(2+sqrt(3))^n = x(n) + y(n)*sqrt(3); let s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+3*(s(n)^2-s(n))).
a(n) = (3*A001570(n) + 1)/4. - Ralf Stephan, May 20 2007
From Richard Choulet, Oct 01 2007: (Start)
a(n+2) = 14*a(n+1) - a(n) - 3.
a(n+1) = 7*a(n) - 3/2 + (1/2)*sqrt(192*a(n)^2 - 96*a(n) - 15).
G.f.: x*(1-5*x+x^2)/((1-x)*(1-14*x+x^2)). (End)

Extensions

Offset set to 1 by R. J. Mathar, Apr 28 2020
More terms from Michel Marcus, Jan 20 2021