A128880 Triangular numbers congruent to 1 or 5 mod 6.
1, 55, 91, 253, 325, 595, 703, 1081, 1225, 1711, 1891, 2485, 2701, 3403, 3655, 4465, 4753, 5671, 5995, 7021, 7381, 8515, 8911, 10153, 10585, 11935, 12403, 13861, 14365, 15931, 16471, 18145, 18721, 20503, 21115, 23005, 23653, 25651, 26335, 28441
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Mathematica
c=0;Do[tr=n(n+1)/2;If[Abs[Mod[tr,6]]==1,c++;a[c]=tr],{n,300}];Table[a[i],{i,c}] Select[Accumulate[Range[500]],MemberQ[{1,5},Mod[#,6]]&] (* Harvey P. Dale, Sep 28 2013 *)
-
PARI
Vec(-x*(1+54*x+34*x^2+54*x^3+x^4)/((1+x)^2*(x-1)^3) + O(x^100)) \\ Colin Barker, Jan 26 2016
Formula
a(1)=Tr(1), a(2)=Tr(10), where Tr(k)=k(k+1)/2 is triangular number; for n>=3 a(n)=Tr(k(n)), where k(n)=k(n-2)+12 with k(1)=1, k(2)=10.
G.f.: -x*(1+54*x+34*x^2+54*x^3+x^4) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Jul 07 2015
From Colin Barker, Jan 26 2016: (Start)
a(n) = (36*n^2+18*(-1)^n*n-36*n-9*(-1)^n+11)/2.
a(n) = 18*n^2-9*n+1 for n even.
a(n) = 18*n^2-27*n+10 for n odd.
(End)
Sum_{n>=1} 1/a(n) = Pi/3. - Amiram Eldar, Aug 18 2022
Comments