A128890 Triangle T(n,k) related to walks in the positive quadrant.
1, 0, 1, 2, 0, 1, 0, 5, 0, 1, 10, 0, 9, 0, 1, 0, 35, 0, 14, 0, 1, 70, 0, 84, 0, 20, 0, 1, 0, 294, 0, 168, 0, 27, 0, 1, 588, 0, 840, 0, 300, 0, 35, 0, 1, 0, 2772, 0, 1980, 0, 495, 0, 44, 0, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 2, 0, 1; 0, 5, 0, 1; 10, 0, 9, 0, 1; 0, 35, 0, 14, 0, 1; 70, 0, 84, 0, 20, 0, 1; 0, 294, 0, 168, 0, 27, 0, 1; 588, 0, 840, 0, 300, 0, 35, 0, 1; 0, 2772, 0, 1980, 0, 495, 0, 44, 0, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= If[k==0 && EvenQ[n], 4*Binomial[n,n/2]*Binomial[n+2,(n+2)/2 ]/((n+2)*(n+4)), If[EvenQ[n+k], Binomial[n, (n+k)/2]*Binomial[n+2, (n - k)/2] - Binomial[n+2, (n+k+2)/2]*Binomial[n, (n-k-2)/2], 0]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten
-
PARI
{ T(n,k) = if(k==0 && n%2==0, 4*binomial(n,n/2)*binomial(n+2, (n+2)/2)/((n+2)*(n+4)), if((n+k)%2==0, binomial(n, (n+k)/2)*binomial(n + 2, (n-k)/2) - binomial(n+2, (n+k+2)/2)*binomial(n, (n-k-2)/2), 0)) }; \\ G. C. Greubel, May 20 2019
-
Sage
def T(n, k): if (k==0 and n%2==0): return 4*binomial(n,n/2)*binomial(n+2, (n+2)/2)/((n+2)*(n+4)) elif ((n+k)%2==0): return binomial(n, (n+k)/2)*binomial(n + 2, (n-k)/2) - binomial(n+2, (n+k+2)/2)*binomial(n, (n-k-2)/2) else: return 0 [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 20 2019