cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128890 Triangle T(n,k) related to walks in the positive quadrant.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 5, 0, 1, 10, 0, 9, 0, 1, 0, 35, 0, 14, 0, 1, 70, 0, 84, 0, 20, 0, 1, 0, 294, 0, 168, 0, 27, 0, 1, 588, 0, 840, 0, 300, 0, 35, 0, 1, 0, 2772, 0, 1980, 0, 495, 0, 44, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 20 2007

Keywords

Examples

			Triangle begins:
    1;
    0,    1;
    2,    0,   1;
    0,    5,   0,    1;
   10,    0,   9,    0,   1;
    0,   35,   0,   14,   0,   1;
   70,    0,  84,    0,  20,   0,  1;
    0,  294,   0,  168,   0,  27,  0,  1;
  588,    0, 840,    0, 300,   0, 35,  0,  1;
    0, 2772,   0, 1980,   0, 495,  0, 44,  0,  1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[k==0 && EvenQ[n], 4*Binomial[n,n/2]*Binomial[n+2,(n+2)/2 ]/((n+2)*(n+4)), If[EvenQ[n+k], Binomial[n, (n+k)/2]*Binomial[n+2, (n - k)/2] - Binomial[n+2, (n+k+2)/2]*Binomial[n, (n-k-2)/2], 0]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten
  • PARI
    { T(n,k) = if(k==0 && n%2==0, 4*binomial(n,n/2)*binomial(n+2, (n+2)/2)/((n+2)*(n+4)), if((n+k)%2==0, binomial(n, (n+k)/2)*binomial(n + 2, (n-k)/2) - binomial(n+2, (n+k+2)/2)*binomial(n, (n-k-2)/2), 0)) }; \\ G. C. Greubel, May 20 2019
    
  • Sage
    def T(n, k):
        if (k==0 and n%2==0): return 4*binomial(n,n/2)*binomial(n+2, (n+2)/2)/((n+2)*(n+4))
        elif ((n+k)%2==0): return binomial(n, (n+k)/2)*binomial(n + 2, (n-k)/2) - binomial(n+2, (n+k+2)/2)*binomial(n, (n-k-2)/2)
        else: return 0
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 20 2019

Formula

T(n,k) = binomial(n, r)*binomial(n+2, s) - binomial(n+2, r+1)*binomial(n, s-1) with r=(n+k)/2 and s=(n-k)/2, if n+k is even otherwise T(n,k)=0. Also T(2*n,0) = A000108(n)*A000108(n+1) = A005568(n).