A128894 Triangle read by rows, giving dimensions of exceptional groups with extension to E9 as a non-simple Lie algebra.
3, 8, 27, 14, 77, 273, 28, 300, 1925, 8918, 52, 1053, 12376, 100776, 627912, 78, 2430, 43758, 537966, 4969107, 36685506, 133, 7371, 238602, 5248750, 85709988, 1101296924, 11604306012, 190, 15504, 749360, 24732110, 605537790, 11619550320, 181746027600, 2386644625950
Offset: 1
Examples
Triangle begins: 3; 8, 27; 14, 77, 273; 28, 300, 1925, 8918; 52, 1053, 12376, 100776, 627912; 78, 2430, 43758, 537966, 4969107, 36685506; ...
Links
- J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [See Th. 7.1]
- J. M. Landsberg and L. Manivel, The Sextonions and E_{7 1/2}, (see p. 15), HAL Id : hal-00330636.
- J. M. Landsberg and L. Manivel, Triality, exceptional Lie algebras and Deligne dimension formulas, arXiv:math/0107032 [math.AG], 2001. (see page 2)
Crossrefs
Cf. A133238.
Programs
-
Mathematica
p = {-4/3, -1, -2/3, 0, 1, 2, 4, 6, 8, 16}; g[p_, k_] := (3*p +2*k +5) *Binomial[k+2*p+3, k]*Binomial[k+5*p/2 +3, k]*Binomial[k+3*p+4, k]/((3*p + 5)*Binomial[k+p/2 +1, k]*Binomial[k+p+1, k]); Table[Table[g[p[[n]], k], {k, 1, n}], {n, 1, Length[p]}]
Formula
Let p = {-4/3, -1, -2/3, 0, 1, 2, 4, 6, 8, 16} then g(p,k) = (3*p + 2*k + 5)*binomial(k + 2*p + 3, k)*binomial(k + 5*p/2 + 3, k)*binomial(k + 3*p + 4, k)/((3*p + 5)*binomial(k + p/2 + 1, k)*binomial(k + p + 1, k)); see the Mathematica program.
Comments