cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128894 Triangle read by rows, giving dimensions of exceptional groups with extension to E9 as a non-simple Lie algebra.

Original entry on oeis.org

3, 8, 27, 14, 77, 273, 28, 300, 1925, 8918, 52, 1053, 12376, 100776, 627912, 78, 2430, 43758, 537966, 4969107, 36685506, 133, 7371, 238602, 5248750, 85709988, 1101296924, 11604306012, 190, 15504, 749360, 24732110, 605537790, 11619550320, 181746027600, 2386644625950
Offset: 1

Views

Author

Roger L. Bagula, May 09 2007

Keywords

Comments

Row sums are {3, 35, 364, 11171, 742169, 42238845, 12796807780, ...}.

Examples

			Triangle begins:
   3;
   8,   27;
  14,   77,   273;
  28,  300,  1925,   8918;
  52, 1053, 12376, 100776,  627912;
  78, 2430, 43758, 537966, 4969107, 36685506; ...
		

Crossrefs

Cf. A133238.

Programs

  • Mathematica
    p = {-4/3, -1, -2/3, 0, 1, 2, 4, 6, 8, 16};
    g[p_, k_] := (3*p +2*k +5) *Binomial[k+2*p+3, k]*Binomial[k+5*p/2 +3, k]*Binomial[k+3*p+4, k]/((3*p + 5)*Binomial[k+p/2 +1, k]*Binomial[k+p+1, k]);
    Table[Table[g[p[[n]], k], {k, 1, n}], {n, 1, Length[p]}]

Formula

Let p = {-4/3, -1, -2/3, 0, 1, 2, 4, 6, 8, 16} then g(p,k) = (3*p + 2*k + 5)*binomial(k + 2*p + 3, k)*binomial(k + 5*p/2 + 3, k)*binomial(k + 3*p + 4, k)/((3*p + 5)*binomial(k + p/2 + 1, k)*binomial(k + p + 1, k)); see the Mathematica program.