A128908 Riordan array (1, x/(1-x)^2).
1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 4, 10, 6, 1, 0, 5, 20, 21, 8, 1, 0, 6, 35, 56, 36, 10, 1, 0, 7, 56, 126, 120, 55, 12, 1, 0, 8, 84, 252, 330, 220, 78, 14, 1, 0, 9, 120, 462, 792, 715, 364, 105, 16, 1, 0, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 0: 1 1: 0 1 2: 0 2 1 3: 0 3 4 1 4: 0 4 10 6 1 5: 0 5 20 21 8 1 6: 0 6 35 56 36 10 1 7: 0 7 56 126 120 55 12 1 8: 0 8 84 252 330 220 78 14 1 9: 0 9 120 462 792 715 364 105 16 1 10: 0 10 165 792 1716 2002 1365 560 136 18 1 ... reformatted by _Wolfdieter Lang_, Jul 31 2017 From _Peter Luschny_, Mar 06 2022: (Start) The sequence can also be seen as a square array read by upwards antidiagonals. 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 0, 2, 4, 6, 8, 10, 12, 14, 16, ... A005843 0, 3, 10, 21, 36, 55, 78, 105, 136, ... A014105 0, 4, 20, 56, 120, 220, 364, 560, 816, ... A002492 0, 5, 35, 126, 330, 715, 1365, 2380, 3876, ... (A053126) 0, 6, 56, 252, 792, 2002, 4368, 8568, 15504, ... (A053127) 0, 7, 84, 462, 1716, 5005, 12376, 27132, 54264, ... (A053128) 0, 8, 120, 792, 3432, 11440, 31824, 77520, 170544, ... (A053129) 0, 9, 165, 1287, 6435, 24310, 75582, 203490, 490314, ... (A053130) A27,A292, A389, A580, A582, A1288, A10966, A10968, A165817 (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv:1110.6620 [math.RT], 2014.
Crossrefs
Programs
-
Maple
# Computing the rows of the array representation: S := proc(n,k) option remember; if n = k then 1 elif k < 0 or k > n then 0 else S(n-1, k-1) + 2*S(n-1, k) - S(n-2, k) fi end: Arow := (n, len) -> seq(S(n+k-1, k-1), k = 0..len-1): for n from 0 to 8 do Arow(n, 9) od; # Peter Luschny, Mar 06 2022 # Uses function PMatrix from A357368. PMatrix(10, n -> n); # Peter Luschny, Oct 19 2022
-
Mathematica
With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - x)^2/(1 - (2 + y)*x + x^2), {x, 0, nmax}, {y, 0, nmax}], x], y]] // Flatten (* G. C. Greubel, Nov 22 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, if(k==0, 0, binomial(n+k-1,2*k-1))), ", "))) \\ G. C. Greubel, Nov 22 2017
-
Python
from functools import cache @cache def A128908(n, k): if n == k: return 1 if (k <= 0 or k > n): return 0 return A128908(n-1, k-1) + 2*A128908(n-1, k) - A128908(n-2, k) for n in range(10): print([A128908(n, k) for k in range(n+1)]) # Peter Luschny, Mar 07 2022
-
Sage
@cached_function def T(k,n): if k==n: return 1 if k==0: return 0 return sum(i*T(k-1,n-i) for i in (1..n-k+1)) A128908 = lambda n,k: T(k,n) for n in (0..10): print([A128908(n,k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
Formula
T(n,0) = 0^n, T(n,k) = binomial(n+k-1, 2k-1) for k >= 1.
Sum_{k=0..n} T(n,k)*2^(n-k) = A002450(n) = (4^n-1)/3 for n>=1. - Philippe Deléham, Oct 19 2008
G.f.: (1-x)^2/(1-(2+y)*x+x^2). - Philippe Deléham, Jan 20 2012
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A001352(n), (-1)^(n+1)*A054888(n+1), (-1)^n*A008574(n), (-1)^n*A084103(n), (-1)^n*A084099(n), A163810(n), A000007(n), A088305(n) for x = -6, -5, -4, -3, -2, -1, 0, 1 respectively. - Philippe Deléham, Jan 20 2012
Riordan array (1, x/(1-x)^2). - Philippe Deléham, Jan 20 2012
Comments