cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128919 Numbers simultaneously heptagonal and centered heptagonal.

Original entry on oeis.org

1, 148, 21022, 2984983, 423846571, 60183228106, 8545594544488, 1213414242089197, 172296276782121493, 24464857888819162816, 3473837523935538998386
Offset: 0

Views

Author

Steven Schlicker, Apr 24 2007

Keywords

Examples

			a(1)=148 because 148 is the seventh centered heptagonal number and the eighth heptagonal number.
		

Crossrefs

Programs

  • Maple
    CP := n -> 1+1/2*7*(n^2-n): N:=10: u:=6: v:=1: x:=7: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+35*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp;
  • Mathematica
    Nest[Append[#,142Last[#]-#[[-2]]+7]&,{1,148},20]  (* Harvey P. Dale, Apr 17 2011 *)

Formula

x(n) + y(n)*sqrt(35) = (7+sqrt(35))*(6+sqrt(35))^n s(n) = (y(n)+1)/2 a(n) = (1/2)*(2+7*(s(n)^2-s(n))).
From Richard Choulet, Oct 01 2007: (Start)
a(n+2) = 142*a(n+1)-a(n)+7.
a(n+1) = 71*a(n)+3.5+1.5*(2240*a(n)^2+224*a(n)-63)^0.5.
G.f.: z*(1+5*z+z^2)/((1-z)*(1-142*z+z^2)). (End)