cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128924 T(n,m) is the number of m's in the fundamental period of Fibonacci numbers mod n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 1, 3, 1, 1, 4, 4, 4, 4, 4, 2, 6, 3, 4, 3, 6, 2, 4, 2, 1, 1, 2, 4, 2, 3, 2, 1, 0, 3, 0, 1, 2, 5, 2, 2, 2, 2, 2, 2, 5, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 1, 3, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 5, 2, 2, 1, 5, 0, 1, 1, 2, 2, 1, 4, 4, 2, 2, 0, 4, 0, 0, 4, 0, 2, 2, 4, 2, 8, 2, 2, 1, 4, 4, 4, 4, 4, 1, 2, 2, 8
Offset: 1

Views

Author

R. J. Mathar, Apr 25 2007

Keywords

Comments

T(n,m) is the triangle read by rows, 0<=m
A118965 and A066853 give numbers of zeros and nonzeros in n-th row, respectively. - Reinhard Zumkeller, Jan 16 2014

Examples

			{F(k) mod 4} has fundamental period (0,1,1,2,3,1), see A079343, with
T(4,0)=1 zero, T(4,1)=3 ones, T(4,2)=1 two's, T(4,3)=1 three's. The triangle starts
1,
1, 2,
2, 3, 3,
1, 3, 1, 1,
4, 4, 4, 4, 4,
2, 6, 3, 4, 3, 6,
2, 4, 2, 1, 1, 2, 4,
2, 3, 2, 1, 0, 3, 0, 1,
2, 5, 2, 2, 2, 2, 2, 2, 5,
4, 8, 4, 8, 4, 8, 4, 8, 4, 8,
1, 3, 2, 1, 0, 1, 0, 0, 1, 0, 1,
2, 5, 2, 2, 1, 5, 0, 1, 1, 2, 2, 1,
4, 4, 2, 2, 0, 4, 0, 0, 4, 0, 2, 2, 4,
2, 8, 2, 2, 1, 4, 4, 4, 4, 4, 1, 2, 2, 8,
2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3,
2, 3, 4, 1, 0, 3, 0, 1, 2, 3, 0, 1, 0, 3, 0, 1,
4, 4, 2, 2, 4, 2, 0, 0, 2, 2, 0, 0, 2, 4, 2, 2, 4,
		

Crossrefs

Cf. A053029, A053030, A053031, A001175 (row sums), A001176 (1st column).

Programs

  • Haskell
    import Data.List (group, sort)
    a128924 n k = a128924_tabl !! (n-1) !! (k-1)
    a128924_tabl = map a128924_row [1..]
    a128924_row 1 = [1]
    a128924_row n = f [0..n-1] $ group $ sort $ g 1 ps where
       f []     _                            = []
       f (v:vs) wss'@(ws:wss) | head ws == v = length ws : f vs wss
                              | otherwise    = 0 : f vs wss'
       g 0 (1 : xs) = []
       g _ (x : xs) = x : g x xs
       ps = 1 : 1 : zipWith (\u v -> (u + v) `mod` n) (tail ps) ps
    -- Reinhard Zumkeller, Jan 16 2014
  • Maple
    A128924 := proc(m,h)
        local resul,k,M ;
        resul :=0 ;
        for k from 0 to A001175(m)-1 do
            M := combinat[fibonacci](k) mod m ;
            if M = h then
                resul := resul+1 ;
            end if ;
        end do;
        resul ;
    end proc:
    seq(seq(A128924(m,h),h=0..m-1),m=1..17) ;
  • Mathematica
    A001175[1] = 1; A001175[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[Fibonacci[k+1], n] == 1, Return[k]]]; T[m_, h_] := Module[{resul, k, M}, resul = 0; For[k = 0, k <= A001175[m]-1, k++, M = Mod[Fibonacci[k], m]; If[ M == h, resul++]]; Return[resul]]; Table[T[m, h], {m, 1, 17}, {h, 0, m-1}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Maple code *)

Formula

T(n,n) = A235715(n). - Reinhard Zumkeller, Jan 17 2014