A128935 a(n) = Fibonacci(5^n) / 5^n.
1, 1, 3001, 475400918060101145703001, 29642179764875707696452732234250095350341524541114277856812964100763567848899514572925690068090872073476146381237687662210078001
Offset: 0
Programs
-
Maple
a := proc(n) option remember; if n = 0 then 1 else 5^(4*n-3)*a(n-1)^5 - 5^(2*n-1)*a(n-1)^3 + a(n-1) end if; end proc: seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
-
Mathematica
Table[ Fibonacci[ 5^n ] / 5^n, {n,0,4} ]
Formula
a(n) = Fibonacci(5^n) / 5^n.
a(n+1) = 5^(4*n+1)*a(n)^5 - 5^(2*n+1)*a(n)^3 + a(n) with a(0) = 1. - Peter Bala, Nov 24 2022
Comments