cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128969 a(n) = (n^3 - n)*9^n.

Original entry on oeis.org

0, 486, 17496, 393660, 7085880, 111602610, 1607077584, 21695547384, 278942752080, 3451916556990, 41422998683880, 484649084601396, 5551434969070536, 62453643402043530, 691794203838020640, 7560322370515511280, 81651481601567521824, 872650209616752889494
Offset: 1

Views

Author

Mohammad K. Azarian, Apr 28 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^3-n)*9^n: n in [0..25]]; // Vincenzo Librandi, Feb 11 2013
    
  • Magma
    I:=[0, 486, 17496, 393660]; [n le 4 select I[n] else 36*Self(n-1) - 486*Self(n-2) + 2916*Self(n-3) - 6561*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 11 2013
  • Mathematica
    CoefficientList[Series[486 x/(1 - 9 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 11 2013 *)

Formula

From R. J. Mathar, Dec 19 2008 (Start)
G.f.: 486x^2/(1-9x)^4.
a(n) = 486*A038291(n+1,3). (End)
a(n) = 36*a(n-1) - 486*a(n-2) + 2916*a(n-3) - 6561*a(n-4). - Vincenzo Librandi, Feb 11 2013
From Amiram Eldar, Oct 02 2022: (Start)
a(n) = A007531(n+1)*A001019(n).
Sum_{n>=2} 1/a(n) = (32/9)*log(9/8) - 5/12.
Sum_{n>=2} (-1)^n/a(n) = (50/9)*log(10/9) - 7/12. (End)

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008