cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A258868 a(n) is the smallest integer >= a(n-1) such that prime(n)*2^a(n)-1 is a prime number.

Original entry on oeis.org

1, 1, 2, 5, 26, 287, 356, 395, 544, 11008, 21957, 32125, 42450, 50867, 55408, 206970, 358276, 384287, 403461, 735802, 783831, 969795, 1192950, 1383108
Offset: 1

Views

Author

Pierre CAMI, Jun 13 2015

Keywords

Examples

			2*2^1-1=3 prime so a(1)=1.
3*2^1-1=5 prime so a(2)=1.
5*2^1-1=9 composite, 5*2^2-1=19 prime so a(3)=2.
		

Crossrefs

Cf. A128979.

Programs

  • Maple
    A258868 := proc(n)
        option remember;
        if n = 0 then
            0;
        else
            for a from procname(n-1) do
                ithprime(n)*2^a-1 ;
                if isprime(%) then
                    return a;
                fi ;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    lst={1};Do[x=Last[lst];Label[begin];
    If[PrimeQ[Prime[n]*2^x-1],AppendTo[lst,x],x=x+1;Goto[begin]],{n,2,9}];lst
    (* Ivan N. Ianakiev, Jun 19 2015 *)
  • PARI
    first(n)=my(t,p); vector(n,i, p=prime(i); while(!ispseudoprime(p<Charles R Greathouse IV, Jul 03 2015
Showing 1-1 of 1 results.