A129010 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+833)^2 = y^2.
0, 124, 168, 187, 343, 399, 595, 624, 915, 952, 1260, 1372, 1768, 1827, 1975, 2499, 3135, 3367, 3468, 4312, 4620, 5712, 5875, 7524, 7735, 9499, 10143, 12427, 12768, 13624, 16660, 20352, 21700, 22287, 27195, 28987, 35343, 36292, 45895, 47124
Offset: 1
Keywords
Examples
124^2+(124+833)^2 = 15376+915849 = 931225 = 965^2.
Crossrefs
Programs
-
PARI
{forstep(n=0, 50000, [3, 1], if(issquare(2*n^2+1666*n+693889), print1(n, ",")))}
Formula
a(n) = 6*a(n-15)-a(n-30)+1666 for n > 30; a(1) = 0, a(2) = 124, a(3) = 168, a(4) = 187, a(5) = 343, a(6) = 399, a(7) = 595, a(8) = 624, a(9) = 915, a(10) = 952, a(11) = 1260, a(12) = 1372, a(13) = 1768, a(14) = 1827, a(15) = 1975, a(16) = 2499, a(17) = 3135, a(18) = 3367, a(19) = 3468, a(20) = 4312, a(21) = 4620, a(22) = 5712, a(23) = 5875, a(24) = 7524, a(25) = 7735, a(26) = 9499, a(27) = 10143, a(28) = 12427, a(29) = 12768, a(30) = 13624.
G.f.: x*(124+44*x+19*x^2+156*x^3+56*x^4+196*x^5+29*x^6+291*x^7+37*x^8+308*x^9+112*x^10+396*x^11+59*x^12+148*x^13+524*x^14-108*x^15-32*x^16-13*x^17-92*x^18-28*x^19-84*x^20-11*x^21-97*x^22-11*x^23-84*x^24-28*x^25-92*x^26-13*x^27-32*x^28-108*x^29)/((1-x)*(1-6*x^15+x^30)).
Extensions
Edited by Klaus Brockhaus, Feb 16 2009
Comments