Original entry on oeis.org
1, 2, 7, 27, 86, 264, 749, 2022
Offset: 0
N. J. A. Sloane, based on email from Jerry R. Dias (DiasJ(AT)umkc.edu), May 08 2007
- J. R. Dias, The Periodic Table Set as a Unifying Concept in Going from Benzenoid Hydrocarbons to Fullerene Carbons, in "The Periodic Table: Into the 21st Century", Edited by D. H. Rouvray and R. B. King, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2004, 371-396.
Original entry on oeis.org
1, 3, 12, 38, 128, 373, 1055, 2765
Offset: 0
N. J. A. Sloane, based on email from Jerry R. Dias (DiasJ(AT)umkc.edu), May 08 2007
- J. R. Dias, The Periodic Table Set as a Unifying Concept in Going from Benzenoid Hydrocarbons to Fullerene Carbons, in "The Periodic Table: Into the 21st Century", Edited by D. H. Rouvray and R. B. King, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2004, 371-396.
A129016
A129012 with the third term from each triple omitted.
Original entry on oeis.org
1, 1, 2, 3, 7, 12, 27, 38, 86, 128, 264, 373, 749, 1055, 2022, 2765
Offset: 0
N. J. A. Sloane, based on email from Jerry R. Dias (DiasJ(AT)umkc.edu), May 08 2007
- J. R. Dias, The Periodic Table Set as a Unifying Concept in Going from Benzenoid Hydrocarbons to Fullerene Carbons, in "The Periodic Table: Into the 21st Century", Edited by D. H. Rouvray and R. B. King, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2004, 371-396.
A129021
A129017 with the third term from each triple omitted.
Original entry on oeis.org
1, 1, 2, 4, 12, 19, 46, 70, 162, 239, 504, 726, 1471, 2062
Offset: 0
N. J. A. Sloane, based on email from Jerry R. Dias (DiasJ(AT)umkc.edu), May 08 2007
- J. R. Dias, The Periodic Table Set as a Unifying Concept in Going from Benzenoid Hydrocarbons to Fullerene Carbons, in "The Periodic Table: Into the 21st Century", Edited by D. H. Rouvray and R. B. King, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2004, 371-396.
A306334
a(n) is the number of different linear hydrocarbon molecules with n carbon atoms.
Original entry on oeis.org
1, 3, 4, 10, 18, 42, 84, 192, 409, 926, 2030, 4577, 10171, 22889, 51176, 115070, 257987, 579868, 1301664, 2925209, 6569992, 14763529, 33166848, 74527233, 167446566, 376253517, 845401158, 1899609267, 4268309531, 9590827171, 21550227328, 48422972296, 108805058758
Offset: 1
For n=1, there is one possibility: CH4.
For n=2, there are 3 solutions: CHCH, CH3CH3, CH2CH2.
For n=3, there are 4 solutions: CHCCH3, CH2CCH2, CH3CHCH2, CH3CH2CH3.
For n=6, there are 42 solutions: CH3CH2CHCHCCH, CH3CH2CHCHCH2CH3, CH2CHCCCHCH2, CH2CHCHCHCH2CH3, CH2CHCHCHCCH, CH2CCCCHCH3, CHCCCCHCH2, CH3CHCHCHCHCH3, CHCCHCHCCH, CH2CCCCCH2, CH3CCCH2CH2CH3, CH3CCCCCH3, CH3CH2CH2CH2CH2CH3, CH2CHCHCHCHCH2, CH2CCHCH2CHCH2, CH3CHCCCHCH3, CHCCH2CH2CH2CH3, CHCCH2CH2CCH, CH3CCCH2CHCH2, CH2CCCHCH2CH3, CH2CCCHCCH, CHCCH2CCCH3, CHCCH2CHCCH2, CH3CH2CH2CH2CHCH2, CH2CHCHCCHCH3, CH3CH2CCCH2CH3, CH2CHCH2CH2CHCH2, CH2CHCHCCCH2, CH3CHCCHCH2CH3, CH3CH2CH2CHCHCH3, CH3CHCCHCCH, CHCCH2CH2CHCH2, CH3CHCHCCCH3, CH2CCHCCCH3, CH3CHCHCHCCH2, CHCCCCH2CH3, CH2CHCH2CHCHCH3, CH2CCHCHCCH2, CHCCCCCH, CH2CCHCH2CH2CH3, CH3CH2CCCHCH2, CHCCH2CHCHCH3.
- Vincent Champain, Table of n, a(n) for n = 1..1000
- L. Edson Jeffery, Danzer matrices (unit-primitive matrices). [It contains a discussion of a generalization of the matrix M that appears in the formula for a(n). See basis D_7.]
- Wikipedia, Cayley-Hamilton theorem.
- R. Witula, D. Slota, and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq. 9 (2006), Article 06.4.3. [See Corollary 2.4 and the discussion about the polynomial p_7(x) and its roots. This essentially proves that a(n) can be expressed in terms of exp(I*2*Pi/7).]
- Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-1,0,-2,3,1,-1).
-
with(LinearAlgebra):
M := Matrix([[0, 0, 1], [0, 1, 1], [1, 1, 1]]):
X := proc(n) MatrixPower(M, n - 2): end proc:
Y := proc(n) MatrixPower(M, floor(1/2*n) - 2): end proc:
a := proc(n) `if`(n < 4, [1,3,4][n], 1/2*(add(add(X(n)[i, j], i = 1..3), j = 1..3) + add(add(Y(n)[i, j]*min(j, 3 - (n mod 2)), i = 1..3), j = 1..3))):
end proc:
seq(a(n), n=1..40); # Petros Hadjicostas, Nov 17 2019
-
M = {{0, 0, 1}, {0, 1, 1}, {1, 1, 1}};
X[n_] := MatrixPower[M, n - 2];
Y[n_] := MatrixPower[M, Floor[1/2*n] - 2];
a[n_] := If[n < 4, {1, 3, 4}[[n]], 1/2*(Sum[Sum[X[n][[i, j]], {i, 1, 3}], {j, 1, 3}] + Sum[Sum[Y[n][[i, j]]*Min[j, 3 - Mod[n, 2]], {i, 1, 3}], {j, 1, 3}])];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 16 2023, after Petros Hadjicostas *)
-
from numpy import array as npa
from numpy.linalg import matrix_power as npow
def F(n):
if n<4: return([0,1,3,4][n])
m=npa([[0,0,1],[0,1,1],[1,1,1]],dtype=object)
m2=npow(m,n//2-2)
return((sum(sum(npow(m,n-2)))+sum(sum(m2[j]*min(j+1,3-(n&1)) for j in range(3))))//2)
A129017
Isomer numbers for the constant-isomer series: the monradical, diradical, triradical, tetraradical, etc. series.
Original entry on oeis.org
1, 1, 1, 2, 4, 4, 12, 19, 19, 46, 70, 70, 162, 239, 239, 504, 726, 726, 1471, 2062, 2062
Offset: 0
N. J. A. Sloane, based on email from Jerry R. Dias (DiasJ(AT)umkc.edu), May 08 2007
- J. R. Dias, The Periodic Table Set as a Unifying Concept in Going from Benzenoid Hydrocarbons to Fullerene Carbons, in "The Periodic Table: Into the 21st Century", Edited by D. H. Rouvray and R. B. King, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2004, 371-396.
Original entry on oeis.org
1, 2, 12, 46, 162, 504, 1471
Offset: 0
N. J. A. Sloane, based on email from Jerry R. Dias (DiasJ(AT)umkc.edu), May 08 2007
- J. R. Dias, The Periodic Table Set as a Unifying Concept in Going from Benzenoid Hydrocarbons to Fullerene Carbons, in "The Periodic Table: Into the 21st Century", Edited by D. H. Rouvray and R. B. King, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2004, 371-396.
Original entry on oeis.org
1, 4, 19, 70, 239, 726, 2062
Offset: 0
N. J. A. Sloane, based on email from Jerry R. Dias (DiasJ(AT)umkc.edu), May 08 2007
- J. R. Dias, The Periodic Table Set as a Unifying Concept in Going from Benzenoid Hydrocarbons to Fullerene Carbons, in "The Periodic Table: Into the 21st Century", Edited by D. H. Rouvray and R. B. King, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2004, 371-396.
A129022
Isomer numbers for the fluorenoid/fluoranthenoid constant-isomer series.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 7, 7, 9, 17, 9, 31, 31, 41, 72, 41, 120, 120
Offset: 0
- J. R. Dias, The Periodic Table Set as a Unifying Concept in Going from Benzenoid Hydrocarbons to Fullerene Carbons, in "The Periodic Table: Into the 21st Century", Edited by D.H. Rouvray and R. B. King, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2004, 371-396. [See Section 5.2.]
- J. Brunvoll, B. N. Cyvin, S. J. Cyvin, G. Brinkmann, and J. Bornhoft, Enumeration of chemical isomers of polyclic conjugated hydrocarbons with six-membered and five-membered rings, Z. Naturforsch. 51a (1996), pp. 1073-1078.
- S. J. Cyvin, B. N. Cyvin and J. Brunvoll, Graph-theoretical studies on fluoranthenoids and fluorenoids, J. Molec. Struct. (Theochem) 281(2-3) (1993), pp. 229-236.
- Jerry Ray Dias, Series of fluorenoiod/fluroranthenoid hydrocarbons having a constant number of isomers, Chem. Phys. Lett. 185 (1-2) (1991), pp. 10-15. [See Table 2, p. 13.] (*)
- Jerry Ray Dias, Deciphering the information content of chemical formulas: Chemical and structural characteristics and enumeration of indacenes, J. Chem. Inf. Comput. Sci. 32 (1992), pp. 203-209. [Table III, p. 206, gives the number of isomers for indacenoid hydrocarbon constant-isomer series that appear in A129023. The paper, however, contains a useful explanation of the whole theory.]
- Jerry Ray Dias, Notes on constant-isomer series, J. Chem. Inf. Comput. Sci. 33 (1993), pp. 117-127.
- Jerry Ray Dias, Graph theoretical invariants and elementary subgraphs of polyhex and polypent/polyhex systems of chemical relevance, Discr. App. Math. 67 (1-3) (1996), pp. 79-114. [This paper contains a clear mathematical definition of all the symbols used in the chemical papers. It is also contains a description of the so-called "aufbau principle".]
- Jerry Ray Dias, Structure/formula informatics of isomeric sets of fluoranthemoid/fluorenoid and indacenoid hydrocarbons, Journal of Mathematical Chemistry 48(2) (2010), pp. 313-329. [It contains more recent information about this sequence and other similar sequences, A129012-A129021 and A129023.]
A129023
Isomer numbers for the indacenoid constant-isomer series.
Original entry on oeis.org
1, 1, 1, 3, 6, 7, 6, 12, 28, 26, 28, 51
Offset: 0
- J. Brunvoll, B. N. Cyvin, S. J. Cyvin, G. Brinkmann and J. Bornhoft, Z. Naturforsch., 51a, 1073 (1996).
- S. J. Cyvin, B. N. Cyvin and J. Brunvoll, J. Molec. Struct. (Theochem), 281, 229 (1993).
- J. R. Dias, Chem. Phys. Lett., 185, 10 (1991).
- J. R. Dias, J. Chem. Inf. Comput. Sci., 32, 203-209 (1992). (*)
- J. R. Dias, J. Chem. Inf. Comput. Sci. 33, 117 (1993).
- J. R. Dias, Discr. App. Math., 67, 79 (1996).
- J. R. Dias, The Periodic Table Set as a Unifying Concept in Going from Benzenoid Hydrocarbons to Fullerene Carbons, in "The Periodic Table: Into the 21st Century", Edited by D.H. Rouvray and R. B. King, Research Studies Press Ltd, Baldock, Hertfordshire, England, 2004, 371-396. [See Section 5.2.]
Showing 1-10 of 12 results.
Comments