A129065 Coefficients of the v=1 member of a family of certain orthogonal polynomials.
1, 0, 1, 0, 2, 1, 0, 12, 10, 1, 0, 144, 156, 28, 1, 0, 2880, 3696, 908, 60, 1, 0, 86400, 125280, 37896, 3508, 110, 1, 0, 3628800, 5780160, 2036592, 236472, 10528, 182, 1, 0, 203212800, 349090560, 138517632, 19022736, 1074176, 26600, 280, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 2, 1; 0, 12, 10, 1; 0, 144, 156, 28, 1; 0, 2880, 3696, 908, 60, 1; ... n=5,[0,2880,3696,908,60,1] stands for the polynomial x*(2880 + 3696*x + 908*x^2 + 60*x^3 + 1*x^4) with one zero 0 and some other four zeros. Tridiagonal matrix V(5,1) = [[0,0,0,0,0], [1,-2,1,0,0], [0,4,-8,4,0], [0,0,9,-18,9], [0,0,0,16,-32]].
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- M. Bruschi, F. Calogero and R. Droghei, Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials, J. Physics A, 40(2007), pp. 3815-3829.
- Wolfdieter Lang, First ten rows.
Crossrefs
Programs
-
Magma
function T(n,k) // T = A129065 if k lt 0 or k gt n then return 0; elif n eq 0 then return 1; else return 2*(n-1)^2*T(n-1,k) - 4*Binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1); end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2024
-
Mathematica
nmax = 9; T[n_, m_] := T[n, m] = (-(n-2)^2)*(n-1)^2*T[n-2, m] + T[n-1, m-1] + 2*(n-1)^2*T[n-1, m]; T[n_, m_] /; n < m = 0; T[-1, ] = 0; T[0, 0] = 1; T[, -1] = 0; Flatten[Table[T[n, m], {n, 0, nmax}, {m, 0, n}]] (* Jean-François Alcover, Sep 26 2011, after recurrence *)
-
SageMath
@CachedFunction def T(n,k): # T = A129065 if (k<0 or k>n): return 0 elif (n==0): return 1 else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 07 2024
Formula
T(n,m) = [x^m] p(n,1,x), n >= 0, with the three-term recurrence for orthogonal polynomial systems of the form p(n,v,x) = (x + 2*(n-1)^2 - 2*(v-1)*(n-1) - v+1)*p(n-1,v,x) - (n-1)^2*(n-1-v)^2*p(n-2,v,x), n >= 1; p(-1,v,x)=0 and p(0,v,x)=1. Put v=1 here.
Recurrence: T(n,m) = T(n-1,m-1) + (2*(n-1)^2 - 2*(v-1)*(n-1) - v + 1)*T(n-1,m) - ((n-1)^2*(n-1-v)^2)*T(n-2, m); T(n,m)=0 if n < m, T(-1,m):=0, T(0,0)=1, T(n,-1)=0. Put v=1 here.
Sum_{k=0..n} T(n, k) = A129458(n) (row sums).
Comments