A129458
Row sums of triangle A129065 (v=1 member of a family).
Original entry on oeis.org
1, 1, 3, 23, 329, 7545, 253195, 11692735, 710944785, 55043460305, 5286546264275, 616743770648775, 85901526469924825, 14079397690024018825, 2682416268746051840475, 587823624532842773747375, 146813897212611204795118625, 41456888496977804292047054625
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, 2*(n-1)^2*T[n-1,k] - 4*Binomial[n-1,2]^2*T[n-2,k] +T[n-1,k-1] ]]; (* T = A129065 *)
A129458[n_]:= A129458[n]= Sum[T[n,k], {k,0,n}];
Table[A129458[n], {n,0,40}] (* G. C. Greubel, Feb 08 2024 *)
-
@CachedFunction
def T(n,k): # T = A129065
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1)
def A129458(n): return sum(T(n,k) for k in range(n+1))
[A129458(n) for n in range(41)] # G. C. Greubel, Feb 08 2024
A129460
Third column (m=2) of triangle A129065.
Original entry on oeis.org
1, 10, 156, 3696, 125280, 5780160, 349090560, 26760222720, 2540101939200, 292579402752000, 40213832085504000, 6502800338141184000, 1222285449585328128000, 264279998869470904320000
Offset: 0
-
function T(n,k) // T = A129065
if k lt 0 or k gt n then return 0;
elif n eq 0 then return 1;
else return 2*(n-1)^2*T(n-1,k) - 4*Binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1);
end if;
end function;
A129460:= func< n | T(n+2, 2) >;
[A129460(n): n in [0..20]]; // G. C. Greubel, Feb 08 2024
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, 2*(n-1)^2*T[n-1,k] - 4*Binomial[n-1,2]^2*T[n-2,k] +T[n-1,k-1] ]]; (* T=A129065 *)
A129460[n_]:= T[n+2,2];
Table[A129460[n], {n,0,40}] (* G. C. Greubel, Feb 08 2024 *)
-
@CachedFunction
def T(n,k): # T = A129065
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1)
def A129460(n): return T(n+2,2)
[A129460(n) for n in range(41)] # G. C. Greubel, Feb 08 2024
A129461
Fourth column (m=3) of triangle A129065.
Original entry on oeis.org
1, 28, 908, 37896, 2036592, 138517632, 11692594944, 1202885199360, 148407122764800, 21652192199577600, 3690199478509977600, 726862474705593139200, 163918208008013340672000
Offset: 0
-
function T(n,k) // T = A129065
if k lt 0 or k gt n then return 0;
elif n eq 0 then return 1;
else return 2*(n-1)^2*T(n-1,k) - 4*Binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1);
end if;
end function;
A129461:= func< n | T(n+3, 3) >;
[A129461(n): n in [0..20]]; // G. C. Greubel, Feb 08 2024
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, 2*(n-1)^2*T[n-1,k] - 4*Binomial[n-1,2]^2*T[n-2,k] +T[n-1,k-1] ]]; (* T=A129065 *)
A129461[n_]:= T[n+3,3];
Table[A129461[n], {n,0,40}] (* G. C. Greubel, Feb 08 2024 *)
-
@CachedFunction
def T(n,k): # T = A129065
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1)
def A129461(n): return T(n+3,3)
[A129461(n) for n in range(41)] # G. C. Greubel, Feb 08 2024
A136452
A129065 with v=x instead of v=1: recursive polynomial coefficient triangle.
Original entry on oeis.org
1, 1, 4, 0, -1, 36, 0, -17, 4, 576, 0, -380, 148, -15, 14400, 0, -11804, 5908, -1015, 56, 518400, 0, -496944, 290928, -65120, 6116, -185, 25401600, 0, -27460656, 17936112, -4733696, 577556, -28385, 204, 1625702400, 0, -1935293184, 1371808128, -405733232, 57923264, -3462648, -6152, 6209
Offset: 1
{1},
{1},
{4, 0, -1},
{36, 0, -17,4},
{576, 0, -380, 148, -15},
{14400, 0, -11804, 5908, -1015,56},
{518400, 0, -496944, 290928, -65120, 6116, -185},
{25401600, 0, -27460656, 17936112, -4733696, 577556, -28385, 204},
{1625702400, 0, -1935293184, 1371808128, -405733232, 57923264, -3462648, -6152,6209},
{131681894400, 0, -169764367104, 128290843008, -41266969200, 6529719744, -418217336, -12355080, 3024273, -112400},
{13168189440000, 0, -18161573760000, 14454310602240, -4959685865664, 841974673536, -53197348976, -4408319328, 1000552476, -65230280, 1520271}
-
Clear[p, v, x, n] p[ -1, x] = 0 ; p[0, x] = 1; p[n_, x_] := p[n, x] = (x + 2*(n - 1)^2 - 2*(v - 1)*(n - 1) - v + 1)*p[n - 1, x] - (n - 1)^2*(n - 1 - v)^2*p[n - 2, x]; v = x; a = Join[{{1}}, Table[CoefficientList[p[n, x], x], {n, 1, 10}]]; Flatten[a]
A136453
A129065 with v=n instead of v=1: recursive polynomial coefficient triangle.
Original entry on oeis.org
1, 0, 1, -1, -1, 1, 2, -3, -3, 1, 3, 20, -3, -6, 1, -44, -29, 80, 5, -10, 1, 145, -399, -354, 205, 30, -15, 1, 714, 3583, -1155, -1764, 385, 84, -21, 1, -12103, -4816, 29014, 1148, -5929, 532, 182, -28, 1, 51128, -202887, -163008, 132726, 23940, -15561, 420, 342, -36, 1, 520191, 2267207, -1085949, -1450530
Offset: 1
{1},
{0, 1},
{-1, -1, 1},
{2, -3, -3, 1},
{3, 20, -3, -6, 1},
{-44, -29, 80, 5, -10, 1},
{145, -399, -354,205, 30, -15, 1},
{714, 3583, -1155, -1764, 385, 84, -21, 1},
{-12103, -4816, 29014, 1148, -5929, 532, 182, -28, 1},
{51128, -202887, -163008, 132726, 23940, -15561, 420, 342, -36, 1},
{520191, 2267207, -1085949, -1450530, 397515, 120897, -34083, -390, 585, -45, 1}
-
Clear[p, v, x, n] p[ -1, x] = 0 ; p[0, x] = 1; p[n_, x_] := p[n, x] = (x + 2*(n - 1)^2 - 2*(v - 1)*(n - 1) - v + 1)*p[n - 1, x] - (n - 1)^2*(n - 1 - v)^2*p[n - 2, x]; v = n; a = Join[{{1}}, Table[CoefficientList[p[n, x], x], {n, 1, 10}]]; Flatten[a]
A010790
a(n) = n!*(n+1)!.
Original entry on oeis.org
1, 2, 12, 144, 2880, 86400, 3628800, 203212800, 14631321600, 1316818944000, 144850083840000, 19120211066880000, 2982752926433280000, 542861032610856960000, 114000816848279961600000, 27360196043587190784000000, 7441973323855715893248000000
Offset: 0
G.f. = 1 + 2*x + 12*x^2 + 144*x^3 + 2880*x^4 + 86400*x^5 + ...
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 63-65.
- Kenneth H. Rosen, Editor-in-Chief, Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000, page 91. [Ross La Haye, Jan 06 2009]
- T. D. Noe, Table of n, a(n) for n = 0..100
- J. Agapito, On symmetric polynomials with only real zeros and nonnegative gamma-vectors, Linear Algebra and its Applications, Volume 451, 15 June 2014, Pages 260-289.
- Steve Gadbois, 104.12 From calendar coincidence to factorials to Ramanujan, The Mathematical Gazette (2020) Vol. 104, Issue 560, 304-306.
- Anatol N. Kirillov, On some quadratic algebras. I 1/2: Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 002, 172 p. (2016).
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 268.
- S. Tanimoto, Parity alternating permutations and signed Eulerian numbers, Ann. Comb. 14 (2010) 355 (total number of PAPs of [2n+1].)
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle
- Shawn L. Witte, Link Nomenclature, Random Grid Diagrams, and Markov Chain Methods in Knot Theory, Ph. D. Dissertation, University of California-Davis (2020).
- Index entries for sequences related to factorial numbers
-
[Factorial(n)*Factorial(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014
-
f:= n-> n!*(n+1)!: seq(f(n), n=0..30);
-
s=1;lst={s};Do[s+=(s*=n)*n;AppendTo[lst, s], {n, 1, 4!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *)
Times@@@Partition[Range[0,25]!,2,1] (* Harvey P. Dale, Jun 17 2011 *)
-
a(n)= n!^2*(n+1) \\ Charles R Greathouse IV, Jul 31 2011
-
from math import factorial
def A010790(n): return factorial(n)**2*(n+1) # Chai Wah Wu, Apr 22 2024
-
[stirling_number1(n,1)*factorial (n-2) for n in range(2, 17)] # Zerinvary Lajos, Jul 07 2009
A129467
Orthogonal polynomials with all zeros integers from 2*A000217.
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 12, -8, 1, 0, -144, 108, -20, 1, 0, 2880, -2304, 508, -40, 1, 0, -86400, 72000, -17544, 1708, -70, 1, 0, 3628800, -3110400, 808848, -89280, 4648, -112, 1, 0, -203212800, 177811200, -48405888, 5808528, -349568, 10920, -168, 1, 0, 14631321600, -13005619200, 3663035136, -466619904, 30977424, -1135808, 23016, -240, 1
Offset: 0
Triangle starts:
1;
0, 1;
0, -2, 1;
0, 12, -8, 1;
0, -144, 108, -20, 1;
0, 2880, -2304, 508, -40, 1;
...
n=3: [0,12,-8,1]. p(3,x) = x*(12-8*x+x^2) = x*(x-2)*(x-6).
n=5: [0,2880,-2304,508,-40,1]. p(5,x) = x*(2880-2304*x+508*x^2-40*x^3 +x^4) = x*(x-2)*(x-6)*(x-12)*(x-20).
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- G. E. Andrews, W. Gawronski, and L. L. Littlejohn, The Legendre-Stirling Numbers, Discrete Mathematics, Volume 311, Issue 14, 28 July 2011, Pages 1255-1272.
- M. Bruschi, F. Calogero and R. Droghei, Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials, J. Physics A, 40(2007), pp. 3815-3829.
- José L. Cereceda, A refinement of Lang's formula for the sum of powers of integers, arXiv:2301.02141 [math.NT], 2023.
- José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024. See p. 14.
- Mark W. Coffey and Matthew C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- Wolfdieter Lang, First ten rows and more.
-
f:= func< n,k | (&+[Binomial(2*k+j,j)*StirlingFirst(2*n,2*k+j)*n^j: j in [0..2*(n-k)]]) >;
function T(n,k) // T = A129467
if k eq n then return 1;
else return f(n,k) - (&+[Binomial(j,2*(j-k))*T(n,j): j in [k+1..n]]);
end if;
end function;
[[T(n,k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 09 2024
-
T[n_, k_, m_]:= T[n,k,m]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-m) -(m-1))*T[n-1,k,m] -((n-1)*(n-m-1))^2*T[n-2,k,m] +T[n-1,k-1,m]]]; (* T=A129467 *)
Table[T[n,k,n], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 09 2024 *)
-
@CachedFunction
def f(n,k): return sum(binomial(2*k+j,j)*(-1)^j*stirling_number1(2*n,2*k+j)*n^j for j in range(2*n-2*k+1))
def T(n,k): # T = A129467
if n==0: return 1
else: return - sum(binomial(j,2*j-2*k)*T(n,j) for j in range(k+1,n+1)) + f(n,k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 09 2024
A129462
Coefficients of the v=2 member of a family of certain orthogonal polynomials.
Original entry on oeis.org
1, -1, 1, 0, -2, 1, 0, -6, 1, 1, 0, -48, -4, 12, 1, 0, -720, -204, 208, 35, 1, 0, -17280, -7776, 5208, 1348, 74, 1, 0, -604800, -358560, 179688, 64580, 5138, 133, 1, 0, -29030400, -20839680, 8175744, 3888528, 400384, 14952, 216, 1, 0, -1828915200, -1516112640, 472666752, 291010032, 36493200, 1753624, 36624, 327, 1
Offset: 0
Triangle begins:
1;
-1, 1;
0, -2, 1;
0, -6, 1, 1;
0, -48, -4, 12, 1;
0, -720, -204, 208, 35, 1;
...
Row n=2: [0,-2,1]. p(2,2,x) = x*(x-2).
Row n=5: [0,-720,-204,208,35,1]. p(5,2,x) = x*(-720 - 204*x + 208*x^2 + 35*x^3 + 1*x^4) = x*(x-2)*(360 + 282*x + 37*x^2 + x^3).
-
function T(n,k) // T = A129462
if k lt 0 or k gt n then return 0;
elif n eq 0 then return 1;
else return (2*(n-1)*(n-2)-1)*T(n-1,k) - ((n-1)*(n-3))^2*T(n-2,k) + T(n-1,k-1);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 08 2024
-
p[-1, , ]= 0; p[0, , ]= 1; p[n_, v_, x_]:= p[n, v, x] = (x +2*(n-1)^2 - 2*(v-1)*(n-1)-v+1)*p[n-1,v,x] -(n-1)^2*(n-1-v)^2*p[n-2,v,x];
T[n_, m_]:= Coefficient[p[n, 2, x], x, m];
Table[T[n, m], {n, 0, 9}, {m, 0, n}]//Flatten (* Jean-François Alcover, Oct 30 2013 *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-2)- 1)*T[n-1,k] -((n-1)*(n-3))^2*T[n-2,k] +T[n-1,k-1]]]; (* T=A129462 *)
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 08 2024 *)
-
@CachedFunction
def T(n,k): # T = A129462
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (2*(n-1)*(n-2)-1)*T(n-1,k) - ((n-1)*(n-3))^2*T(n-2,k) + T(n-1,k-1)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 08 2024
A130182
Coefficients of the v=1 member of a family of certain orthogonal polynomials.
Original entry on oeis.org
1, -2, 1, 0, -2, 1, 0, -12, 4, 1, 0, -144, 28, 20, 1, 0, -2880, 216, 508, 50, 1, 0, -86400, -2592, 17400, 2548, 98, 1, 0, -3628800, -449280, 788688, 153760, 8568, 168, 1, 0, -203212800, -42405120, 46032768, 11269008, 811648, 23016, 264, 1, 0, -14631321600, -4187635200, 3372731136
Offset: 0
Triangle begins:
[1];
[-2,1];
[0,-2,1];
[0,-12,4,1];
[0,-144,28,20,1];
[0,-2880,216,508,50,1];
...
Row n=5:[0,-2880,216,508,50,1]; pt(5,2,x)= x*(-2880+216*x+508*x^2+50*x^3+1*x^4)= x*(x-2)*(1440+612*x+52*x^2+x^3). pt(5,1,x) has the guaranteed integer zero x=2 (and also x=0 and some other three zeros).
Row n=1:[ -2,1]. pt(1,1,x)=-2+x with integer zero x=2.
Cf.
A129065 (a v=1 member of a similar family).
Showing 1-9 of 9 results.
Comments