cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A129458 Row sums of triangle A129065 (v=1 member of a family).

Original entry on oeis.org

1, 1, 3, 23, 329, 7545, 253195, 11692735, 710944785, 55043460305, 5286546264275, 616743770648775, 85901526469924825, 14079397690024018825, 2682416268746051840475, 587823624532842773747375, 146813897212611204795118625, 41456888496977804292047054625
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

See A129065 for the M. Bruschi et al. reference.

Crossrefs

Cf. A129065.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, 2*(n-1)^2*T[n-1,k] - 4*Binomial[n-1,2]^2*T[n-2,k] +T[n-1,k-1] ]]; (* T = A129065 *)
    A129458[n_]:= A129458[n]= Sum[T[n,k], {k,0,n}];
    Table[A129458[n], {n,0,40}] (* G. C. Greubel, Feb 08 2024 *)
  • SageMath
    @CachedFunction
    def T(n,k): # T = A129065
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1)
    def A129458(n): return sum(T(n,k) for k in range(n+1))
    [A129458(n) for n in range(41)] # G. C. Greubel, Feb 08 2024

Formula

a(n) = Sum_{m=0..n} A129065(n,m).
From Vaclav Kotesovec, Aug 24 2016: (Start)
a(n) = (2*n^2 - 4*n + 3)*a(n-1) - (n-2)^2*(n-1)^2*a(n-2).
a(n) ~ c * n^(2*n+(sqrt(5)-1)/2) / exp(2*n), where c = 6.07482758856838398336112197806575192722726...
(End)

A129460 Third column (m=2) of triangle A129065.

Original entry on oeis.org

1, 10, 156, 3696, 125280, 5780160, 349090560, 26760222720, 2540101939200, 292579402752000, 40213832085504000, 6502800338141184000, 1222285449585328128000, 264279998869470904320000
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

See A129065 for the M. Bruschi et al. reference.

Crossrefs

Cf. A129065, A129459 (m=1), A129461 (m=3).

Programs

  • Magma
    function T(n,k) // T = A129065
      if k lt 0 or k gt n then return 0;
      elif n eq 0 then return 1;
      else return 2*(n-1)^2*T(n-1,k) - 4*Binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1);
      end if;
    end function;
    A129460:= func< n | T(n+2, 2) >;
    [A129460(n): n in [0..20]]; // G. C. Greubel, Feb 08 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, 2*(n-1)^2*T[n-1,k] - 4*Binomial[n-1,2]^2*T[n-2,k] +T[n-1,k-1] ]]; (* T=A129065 *)
    A129460[n_]:= T[n+2,2];
    Table[A129460[n], {n,0,40}] (* G. C. Greubel, Feb 08 2024 *)
  • SageMath
    @CachedFunction
    def T(n,k): # T = A129065
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1)
    def A129460(n): return T(n+2,2)
    [A129460(n) for n in range(41)] # G. C. Greubel, Feb 08 2024

Formula

a(n) = A129065(n+2, 2), n >= 0.

A129461 Fourth column (m=3) of triangle A129065.

Original entry on oeis.org

1, 28, 908, 37896, 2036592, 138517632, 11692594944, 1202885199360, 148407122764800, 21652192199577600, 3690199478509977600, 726862474705593139200, 163918208008013340672000
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

See A129065 for the M. Bruschi et al. reference.

Crossrefs

Cf. A129065, A129460 (m=2).

Programs

  • Magma
    function T(n,k) // T = A129065
      if k lt 0 or k gt n then return 0;
      elif n eq 0 then return 1;
      else return 2*(n-1)^2*T(n-1,k) - 4*Binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1);
      end if;
    end function;
    A129461:= func< n | T(n+3, 3) >;
    [A129461(n): n in [0..20]]; // G. C. Greubel, Feb 08 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, 2*(n-1)^2*T[n-1,k] - 4*Binomial[n-1,2]^2*T[n-2,k] +T[n-1,k-1] ]]; (* T=A129065 *)
    A129461[n_]:= T[n+3,3];
    Table[A129461[n], {n,0,40}] (* G. C. Greubel, Feb 08 2024 *)
  • SageMath
    @CachedFunction
    def T(n,k): # T = A129065
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1)
    def A129461(n): return T(n+3,3)
    [A129461(n) for n in range(41)] # G. C. Greubel, Feb 08 2024

Formula

a(n) = A129065(n+3, 3), n >= 0.

A136452 A129065 with v=x instead of v=1: recursive polynomial coefficient triangle.

Original entry on oeis.org

1, 1, 4, 0, -1, 36, 0, -17, 4, 576, 0, -380, 148, -15, 14400, 0, -11804, 5908, -1015, 56, 518400, 0, -496944, 290928, -65120, 6116, -185, 25401600, 0, -27460656, 17936112, -4733696, 577556, -28385, 204, 1625702400, 0, -1935293184, 1371808128, -405733232, 57923264, -3462648, -6152, 6209
Offset: 1

Views

Author

Roger L. Bagula, Mar 19 2008

Keywords

Comments

Row sums are:
{1, 1, 3, 23, 329, 7545, 253195, 11692735, 710944785, 55043460305,
5286546264275}

Examples

			{1},
{1},
{4, 0, -1},
{36, 0, -17,4},
{576, 0, -380, 148, -15},
{14400, 0, -11804, 5908, -1015,56},
{518400, 0, -496944, 290928, -65120, 6116, -185},
{25401600, 0, -27460656, 17936112, -4733696, 577556, -28385, 204},
{1625702400, 0, -1935293184, 1371808128, -405733232, 57923264, -3462648, -6152,6209},
{131681894400, 0, -169764367104, 128290843008, -41266969200, 6529719744, -418217336, -12355080, 3024273, -112400},
{13168189440000, 0, -18161573760000, 14454310602240, -4959685865664, 841974673536, -53197348976, -4408319328, 1000552476, -65230280, 1520271}
		

Crossrefs

Cf. A129065.

Programs

  • Mathematica
    Clear[p, v, x, n] p[ -1, x] = 0 ; p[0, x] = 1; p[n_, x_] := p[n, x] = (x + 2*(n - 1)^2 - 2*(v - 1)*(n - 1) - v + 1)*p[n - 1, x] - (n - 1)^2*(n - 1 - v)^2*p[n - 2, x]; v = x; a = Join[{{1}}, Table[CoefficientList[p[n, x], x], {n, 1, 10}]]; Flatten[a]

Formula

v=x; p(n, x) = (x + 2*(n - 1)^2 - 2*(v - 1)*(n - 1) - v + 1)*p(n - 1, x) - (n - 1)^2*(n - 1 - v)^2*p(n - 2, x)

A136453 A129065 with v=n instead of v=1: recursive polynomial coefficient triangle.

Original entry on oeis.org

1, 0, 1, -1, -1, 1, 2, -3, -3, 1, 3, 20, -3, -6, 1, -44, -29, 80, 5, -10, 1, 145, -399, -354, 205, 30, -15, 1, 714, 3583, -1155, -1764, 385, 84, -21, 1, -12103, -4816, 29014, 1148, -5929, 532, 182, -28, 1, 51128, -202887, -163008, 132726, 23940, -15561, 420, 342, -36, 1, 520191, 2267207, -1085949, -1450530
Offset: 1

Views

Author

Roger L. Bagula, Mar 19 2008

Keywords

Comments

Row sums are:
{1, 1, -1, -3, 15, 3, -387, 1827, 8001, -172935, 735399}

Examples

			{1},
{0, 1},
{-1, -1, 1},
{2, -3, -3, 1},
{3, 20, -3, -6, 1},
{-44, -29, 80, 5, -10, 1},
{145, -399, -354,205, 30, -15, 1},
{714, 3583, -1155, -1764, 385, 84, -21, 1},
{-12103, -4816, 29014, 1148, -5929, 532, 182, -28, 1},
{51128, -202887, -163008, 132726, 23940, -15561, 420, 342, -36, 1},
{520191, 2267207, -1085949, -1450530, 397515, 120897, -34083, -390, 585, -45, 1}
		

Crossrefs

Cf. A129065.

Programs

  • Mathematica
    Clear[p, v, x, n] p[ -1, x] = 0 ; p[0, x] = 1; p[n_, x_] := p[n, x] = (x + 2*(n - 1)^2 - 2*(v - 1)*(n - 1) - v + 1)*p[n - 1, x] - (n - 1)^2*(n - 1 - v)^2*p[n - 2, x]; v = n; a = Join[{{1}}, Table[CoefficientList[p[n, x], x], {n, 1, 10}]]; Flatten[a]

Formula

v=n; p(n, x) = (x + 2*(n - 1)^2 - 2*(v - 1)*(n - 1) - v + 1)*p(n - 1, x) - (n - 1)^2*(n - 1 - v)^2*p(n - 2, x)

A010790 a(n) = n!*(n+1)!.

Original entry on oeis.org

1, 2, 12, 144, 2880, 86400, 3628800, 203212800, 14631321600, 1316818944000, 144850083840000, 19120211066880000, 2982752926433280000, 542861032610856960000, 114000816848279961600000, 27360196043587190784000000, 7441973323855715893248000000
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the symmetrical n X n matrix M_n(i,j)=1/min(i,j); then for n>=0 det(M_n)=(-1)^(n-1)/a(n-1). - Benoit Cloitre, Apr 27 2002
If n women and n men are to be seated around a circular table, with no two of the same sex seated next to each other, the number of possible arrangements is a(n-1). - Ross La Haye, Jan 06 2009
a(n-1) is also the number of (directed) Hamiltonian cycles in the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 15 2011
a(n) is also number of ways to place k nonattacking semi-bishops on an n X n board, sum over all k>=0 (for definition see A187235). - Vaclav Kotesovec, Dec 06 2011
a(n) is number of permutations of {1,2,3,...,2n} such that no odd numbers are adjacent. - Ran Pan, May 23 2015
a(n) is number of permutations of {1,2,3,...,2n+1} such that no odd numbers are adjacent. - Ran Pan, May 23 2015
a(n-1) is the number of elements of the wreath product of S_n and S_2 with cycle partition equal to (2n), where S_n is the symmetric group of order n. - Josaphat Baolahy, Mar 12 2024

Examples

			G.f. = 1 + 2*x + 12*x^2 + 144*x^3 + 2880*x^4 + 86400*x^5 + ...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, pp. 63-65.
  • Kenneth H. Rosen, Editor-in-Chief, Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000, page 91. [Ross La Haye, Jan 06 2009]

Crossrefs

Second column of triangle A129065.

Programs

  • Magma
    [Factorial(n)*Factorial(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    f:= n-> n!*(n+1)!: seq(f(n), n=0..30);
  • Mathematica
    s=1;lst={s};Do[s+=(s*=n)*n;AppendTo[lst, s], {n, 1, 4!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *)
    Times@@@Partition[Range[0,25]!,2,1] (* Harvey P. Dale, Jun 17 2011 *)
  • PARI
    a(n)= n!^2*(n+1) \\ Charles R Greathouse IV, Jul 31 2011
    
  • Python
    from math import factorial
    def A010790(n): return factorial(n)**2*(n+1) # Chai Wah Wu, Apr 22 2024
  • Sage
    [stirling_number1(n,1)*factorial (n-2) for n in range(2, 17)] # Zerinvary Lajos, Jul 07 2009
    

Formula

From Karol A. Penson, Oct 23 2001: (Start)
Integral representation as n-th moment of a positive function f on the positive half axis, where f(x) = 2*sqrt(x)*BesselK(1, 2*sqrt(x)). Then:
a(n) = Integral_{x>=0} x^n * f(x) dx.
G.f.: a(0) = 1 and a(n) = subs(x=0, n!*diff(1/((x-1)^2), x$n)) for n >= 1. (End)
Sum_{i >=0} 1/a(i) = A096789. - Gerald McGarvey, Jun 10 2004
With b(n)=A002378(n) for n>0 and b(0)=1, a(n) = b(n)*b(n-1)...*b(0). - Tom Copeland, Sep 21 2011
a(n) = det(PS(i+1,j), 1 <= i,j <= n), where PS(n,k) are Legendre-Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
a(n) = (2*n)! / A000108(n) which implies that the e.g.f. of A126120 is Sum_{k>=0} x^(2*k) / a(k). - Michael Somos, Nov 15 2014
0 = a(n)*(+18*a(n+2) - 15*a(n+3) + a(n+4)) + a(n+1)*(-9*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) for all n>=0. - Michael Somos, Nov 15 2014
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ 2*Pi*n^(2*n+2)/exp(2*n).
Sum_{n>=0} (-1)^n/a(n) = BesselJ(1,2) = 0.576724807756873387202448... = A348607 (End)
D-finite with recurrence: a(n) -n*(n+1)*a(n-1)=0. - R. J. Mathar, Jan 27 2020
a(n) = 1/([x^n] hypergeom([], [2], x)). - Peter Luschny, Sep 13 2024

A129467 Orthogonal polynomials with all zeros integers from 2*A000217.

Original entry on oeis.org

1, 0, 1, 0, -2, 1, 0, 12, -8, 1, 0, -144, 108, -20, 1, 0, 2880, -2304, 508, -40, 1, 0, -86400, 72000, -17544, 1708, -70, 1, 0, 3628800, -3110400, 808848, -89280, 4648, -112, 1, 0, -203212800, 177811200, -48405888, 5808528, -349568, 10920, -168, 1, 0, 14631321600, -13005619200, 3663035136, -466619904, 30977424, -1135808, 23016, -240, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

The row polynomials p(n,x) = Sum_{k=0..n} T(n,k)*x^k have the n integer zeros 2*A000217(j), j=0..n-1.
The row polynomials satisfy a three-term recurrence relation which qualify them as orthogonal polynomials w.r.t. some (as yet unknown) positive measure.
Column sequences (without leading zeros) give A000007, A010790(n-1)*(-1)^(n-1), A084915(n-1)*(-1)^(n-2), A130033 for m=0..3.
Apparently this is the triangle read by rows of Legendre-Stirling numbers of the first kind. See the Andrews-Gawronski-Littlejohn paper, table 2. The mirror version is the triangle A191936. - Omar E. Pol, Jan 10 2012

Examples

			Triangle starts:
  1;
  0,    1;
  0,   -2,     1;
  0,   12,    -8,   1;
  0, -144,   108, -20,   1;
  0, 2880, -2304, 508, -40,  1;
  ...
n=3: [0,12,-8,1]. p(3,x) = x*(12-8*x+x^2) = x*(x-2)*(x-6).
n=5: [0,2880,-2304,508,-40,1]. p(5,x) = x*(2880-2304*x+508*x^2-40*x^3 +x^4) = x*(x-2)*(x-6)*(x-12)*(x-20).
		

Crossrefs

Cf. A129462 (v=2 member), A129065 (v=1 member), A191936 (row reversed?).
Cf. A000217, A130031 (row sums), A130032 (unsigned row sums), A191936.
Column sequences (without leading zeros): A000007 (k=0), (-1)^(n-1)*A010790(n-1) (k=1), (-1)^n*A084915(n-1) (k=2), A130033 (k=3).
Cf. A008275.

Programs

  • Magma
    f:= func< n,k | (&+[Binomial(2*k+j,j)*StirlingFirst(2*n,2*k+j)*n^j: j in [0..2*(n-k)]]) >;
    function T(n,k) // T = A129467
      if k eq n then return 1;
      else return f(n,k) -  (&+[Binomial(j,2*(j-k))*T(n,j): j in [k+1..n]]);
    end if;
    end function;
    [[T(n,k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 09 2024
    
  • Mathematica
    T[n_, k_, m_]:= T[n,k,m]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-m) -(m-1))*T[n-1,k,m] -((n-1)*(n-m-1))^2*T[n-2,k,m] +T[n-1,k-1,m]]]; (* T=A129467 *)
    Table[T[n,k,n], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 09 2024 *)
  • SageMath
    @CachedFunction
    def f(n,k): return sum(binomial(2*k+j,j)*(-1)^j*stirling_number1(2*n,2*k+j)*n^j for j in range(2*n-2*k+1))
    def T(n,k): # T = A129467
        if n==0: return 1
        else: return - sum(binomial(j,2*j-2*k)*T(n,j) for j in range(k+1,n+1)) + f(n,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 09 2024

Formula

Row polynomials p(n,x) = Product_{m=1..n} (x - m*(m-1)), n>=1, with p(0,x) = 1.
Row polynomials p(n,x) = p(n, v=n, x) with the recurrence: p(n,v,x) = (x + 2*(n-1)^2 - 2*(v-1)*(n-1) - v + 1)*p(n-1,v,x) - (n-1)^2*(n-1-v)^2*p(n-2,v,x) with p(-1,v,x) = 0 and p(0,v,x) = 1.
T(n, k) = [x^k] p(n, n, x), n >= k >= 0, otherwise 0.
T(n, k) = Sum_{j=0..2*(n-k)} ( binomial(2*k+j, j)*s(n,k)*n^j ) - Sum_{j=k+1..n} binomial(j, 2*(j-k))*T(n, j) (See Coffey and Lettington formula (4.7)). - G. C. Greubel, Feb 09 2024

A129462 Coefficients of the v=2 member of a family of certain orthogonal polynomials.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 0, -6, 1, 1, 0, -48, -4, 12, 1, 0, -720, -204, 208, 35, 1, 0, -17280, -7776, 5208, 1348, 74, 1, 0, -604800, -358560, 179688, 64580, 5138, 133, 1, 0, -29030400, -20839680, 8175744, 3888528, 400384, 14952, 216, 1, 0, -1828915200, -1516112640, 472666752, 291010032, 36493200, 1753624, 36624, 327, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 04 2007

Keywords

Comments

For v >= 1 the orthogonal polynomials p(n,v,x) have v integer zeros k*(k-1), k=1..v, for every n >= v. These zeros are from 2*A000217.
Coefficients of p(n,v=2,x) (in the quoted Bruschi, et al., paper p(nu, n)(x) of eqs. (4) and (8a),(8b)) in increasing powers of x.
The v-family p(n,v,x) consists of characteristic polynomials of the tridiagonal M x M matrix V=V(M,v) with entries V_{m,n} given by v*(v-1) - (m-1)^2 - (v-m)^2 if n=m, m=1,...,M; (m-1)^2 if n=m-1, m=2,...,M; (v-m)^2 if n=m+1, m=1..M-1 and 0 else. p(n,v,x) := det(x*I_n) - V(n,v) with the n dimensional unit matrix I_n.
The column sequences give A019590, A129464, A129465, A129466 for m=0,1,2,3.
p(n,v=2,x) has, for every n >= 2, simple zeros for integers x=0 and x=2. p(2,2,x) has therefore only integer zeros 0 and 2. det(V(n,2))=0 for every n >= 2.

Examples

			Triangle begins:
   1;
  -1,    1;
   0,   -2,    1;
   0,   -6,    1,   1;
   0,  -48,   -4,  12,  1;
   0, -720, -204, 208, 35,  1;
  ...
Row n=2: [0,-2,1]. p(2,2,x) = x*(x-2).
Row n=5: [0,-720,-204,208,35,1]. p(5,2,x) = x*(-720 - 204*x + 208*x^2 + 35*x^3 + 1*x^4) = x*(x-2)*(360 + 282*x + 37*x^2 + x^3).
		

Crossrefs

Columns: A019590 (m=0), A129464 (m=1), A129465 (m=2), A129466 (m=3).
Cf. A000217, A129065 (v=1 triangle), A129463 (row sums).

Programs

  • Magma
    function T(n,k) // T = A129462
      if k lt 0 or k gt n then return 0;
      elif n eq 0 then return 1;
      else return (2*(n-1)*(n-2)-1)*T(n-1,k) - ((n-1)*(n-3))^2*T(n-2,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 08 2024
    
  • Mathematica
    p[-1, , ]= 0; p[0, , ]= 1; p[n_, v_, x_]:= p[n, v, x] = (x +2*(n-1)^2 - 2*(v-1)*(n-1)-v+1)*p[n-1,v,x] -(n-1)^2*(n-1-v)^2*p[n-2,v,x];
    T[n_, m_]:= Coefficient[p[n, 2, x], x, m];
    Table[T[n, m], {n, 0, 9}, {m, 0, n}]//Flatten (* Jean-François Alcover, Oct 30 2013 *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-2)- 1)*T[n-1,k] -((n-1)*(n-3))^2*T[n-2,k] +T[n-1,k-1]]]; (* T=A129462 *)
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 08 2024 *)
  • SageMath
    @CachedFunction
    def T(n,k): # T = A129462
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return (2*(n-1)*(n-2)-1)*T(n-1,k) - ((n-1)*(n-3))^2*T(n-2,k) + T(n-1,k-1)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 08 2024

Formula

T(n,m) = [x^m] p(n,1,x), n >= 0, with the three-term recurrence for orthogonal polynomial systems of the form p(n,v,x) = (x + 2*(n-1)^2 - 2*(v-1)*(n-1) -v+1)*p(n-1,v,x) - (n-1)^2*(n-1-v)^2*p(n-2,v,x), n >= 1; p(-1,v,x)=0 and p(0,v,x)=1. Put v=2 here.
Recurrence: T(n,m) = T(n-1,m-1) + (2*(n-1)^2 - 2*(v-1)*(n-1) - v + 1)*T(n-1,m) -((n-1)^2*(n-1-v)^2)*T(n-2, m); T(n,m)=0 if n < m, T(-1,m):=0, T(0,0)=1, T(n,-1)=0. Put v=2 for this triangle.
Sum_{k=0..n} T(n, k) = A129463(n) (row sums).

A130182 Coefficients of the v=1 member of a family of certain orthogonal polynomials.

Original entry on oeis.org

1, -2, 1, 0, -2, 1, 0, -12, 4, 1, 0, -144, 28, 20, 1, 0, -2880, 216, 508, 50, 1, 0, -86400, -2592, 17400, 2548, 98, 1, 0, -3628800, -449280, 788688, 153760, 8568, 168, 1, 0, -203212800, -42405120, 46032768, 11269008, 811648, 23016, 264, 1, 0, -14631321600, -4187635200, 3372731136
Offset: 0

Views

Author

Wolfdieter Lang, Jun 01 2007

Keywords

Comments

For v>=1 the orthogonal polynomials pt(n,v,x) have v integer zeros k*(k+1), k=1..v, for every n>=v and some other n-v zeros. The integer zeros are from 2*A000217.
The v-family pt(n,v,x) consists of characteristic polynomials of the tridiagonal M x M matrix Vt=Vt(M,v) with entries Vt_{m,n} given by 2*m*(v+1-m) if n=m, m=1,...,M; -m*(v+1-m) if n=m-1, m=2,...,M; -m*(v+1-m) if n=m+1, m=1..M-1 and 0 else. pt(n,v,x):=det(x*I_n-Vt(n,v)) with the n dimensional unit matrix I_n.
pt(n,v=1,x) has, for every n>=1, among its n zeros one for x=2. pt(1,1,x) has therefore only the integer zeros 2. det(Vt(1,1))=2.
The column sequences give [1,-2,0,0,0,...], A010790(n-1)*(-1)^(n-1), A130185, A130186 for m=0,1,2,3.
Coefficients of pt(n,v=1,x) (in the quoted Bruschi et al. paper {\tilde p}^{(\nu)}_n(x) of eqs. (20) and (24a),(24b)) in increasing powers of x.

Examples

			Triangle begins:
[1];
[-2,1];
[0,-2,1];
[0,-12,4,1];
[0,-144,28,20,1];
[0,-2880,216,508,50,1];
...
Row n=5:[0,-2880,216,508,50,1]; pt(5,2,x)= x*(-2880+216*x+508*x^2+50*x^3+1*x^4)= x*(x-2)*(1440+612*x+52*x^2+x^3). pt(5,1,x) has the guaranteed integer zero x=2 (and also x=0 and some other three zeros).
Row n=1:[ -2,1]. pt(1,1,x)=-2+x with integer zero x=2.
		

Crossrefs

Cf. A129065 (a v=1 member of a similar family).
Row sums A130183, unsigned row sums A130184.

Formula

a(n,m) = [x^m]pt(n,1,x), n>=0, with the three term recurrence for orthogonal polynomial systems of the form pt(n,v,x) = (x + 2*n*(n-1-v))*pt(n-1,v,x) -(n-1)*n*(n-1-v)*(n-2-v)*pt(n-2,v,x), n>=1; pt(-1,v,x)=0 and pt(0,v,x)=1. Put v=1 here.
Recurrence: a(n,m) = a(n-1,m-1)+2*n*(n-2)*a(n-1,m) - (n-1)*n*(n-2)*(n-3)*a(n-2,m); a(n,m)=0 if n
Showing 1-9 of 9 results.