A129464
Second column (m=1) of triangle A129462 (v=2 member of a certain family).
Original entry on oeis.org
1, -2, -6, -48, -720, -17280, -604800, -29030400, -1828915200, -146313216000, -14485008384000, -1738201006080000, -248562743869440000, -41758540970065920000, -8142915489162854400000, -1824013069572479385600000, -465123332740982243328000000
Offset: 0
-
[1] cat [-Factorial(n-1)*Factorial(n+1): n in [1..30]]; // G. C. Greubel, Feb 08 2024
-
A129464 := n -> `if`(n=0,1,-(n-1)!^2*n*(n+1)); # Peter Luschny, Oct 15 2010
-
Table[If[n==0, 1, -(n-1)!*(n+1)!], {n,0,30}] (* G. C. Greubel, Feb 08 2024 *)
-
[1]+[-factorial(n-1)*factorial(n+1) for n in range(1,31)] # G. C. Greubel, Feb 08 2024
A129465
Third column (m=2) sequence of triangle A129462 (v=2 member of a certain family).
Original entry on oeis.org
1, 1, -4, -204, -7776, -358560, -20839680, -1516112640, -135920332800, -14772931891200, -1917601910784000, -293337284308992000, -52263416690343936000, -10734227287227924480000, -2518467729187335045120000, -669569466986357627289600000
Offset: 0
-
A129465:= func< n | n eq 0 select 1 else -Factorial(n)*Factorial(n+2)*(HarmonicNumber(n+2) -2) >;
[A129465(n): n in [0..30]]; // G. C. Greubel, Feb 08 2024
-
A129465[n_]:= If[n==0, 1, -n!*(n+2)!*(HarmonicNumber[n+2] -2)];
Table[A129465[n], {n,0,30}] (* G. C. Greubel, Feb 08 2024 *)
-
def A129465(n): return 1 if (n==0) else -factorial(n)*factorial(n+2)*( harmonic_number(n+2) -2)
[A129465(n) for n in range(31)] # G. C. Greubel, Feb 08 2024
A129466
Fourth column (m=3) sequence of triangle A129462 (v=2 member of a certain family).
Original entry on oeis.org
1, 12, 208, 5208, 179688, 8175744, 472666752, 33625704960, 2858013642240, 281566521446400, 30978996781363200, 3583376917637529600, 374151199254884352000, 9777217907401555968000, -16608590925355066982400000, -10323797933882945175552000000
Offset: 0
-
function T(n, k) // T = A129462
if k lt 0 or k gt n then return 0;
elif n eq 0 then return 1;
else return (2*(n-1)*(n-2)-1)*T(n-1, k) - ((n-1)*(n-3))^2*T(n-2, k) + T(n-1, k-1);
end if;
end function;
A129466:= func< n | T(n+3,3) >;
[A129466(n): n in [0..20]]; // G. C. Greubel, Feb 09 2024
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-2) - 1)*T[n-1,k] -((n-1)*(n-3))^2*T[n-2,k] +T[n-1,k-1]]];(*T=A129462*)
A129466[n_]:= T[n+3, 3];
Table[A129466[n], {n,0,40}] (* G. C. Greubel, Feb 09 2024 *)
-
@CachedFunction
def T(n, k): # T = A129462
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (2*(n-1)*(n-2)-1)*T(n-1, k) - ((n-1)*(n-3))^2*T(n-2, k) + T(n-1, k-1)
def A129466(n): return T(n+3,3)
[A129466(n) for n in range(41)] # G. C. Greubel, Feb 09 2024
A129463
Row sums of triangle A129462 (v=2 member of a certain family).
Original entry on oeis.org
1, 0, -1, -4, -39, -680, -18425, -713820, -37390255, -2543067280, -217799766225, -22928327328500, -2909576503498775, -437960283393276600, -77145678498655849225, -15720035935018890359500, -3668950667796545284209375, -972327797466833893742228000
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-2) - 1)*T[n-1,k] -((n-1)*(n-3))^2*T[n-2,k] +T[n-1,k-1] ]]; (* T=A129462 *)
A129463[n_]:= A129463[n]= Sum[T[n,k], {k,0,n}];
Table[A129463[n], {n,0,40}] (* G. C. Greubel, Feb 08 2024 *)
-
@CachedFunction
def T(n,k): # T = A129462
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (2*(n-1)*(n-2)-1)*T(n-1,k) - ((n-1)*(n-3))^2*T(n-2,k) + T(n-1,k-1)
def A129463(n): return sum(T(n,k) for k in range(n+1))
[A129463(n) for n in range(41)] # G. C. Greubel, Feb 08 2024
A129467
Orthogonal polynomials with all zeros integers from 2*A000217.
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 12, -8, 1, 0, -144, 108, -20, 1, 0, 2880, -2304, 508, -40, 1, 0, -86400, 72000, -17544, 1708, -70, 1, 0, 3628800, -3110400, 808848, -89280, 4648, -112, 1, 0, -203212800, 177811200, -48405888, 5808528, -349568, 10920, -168, 1, 0, 14631321600, -13005619200, 3663035136, -466619904, 30977424, -1135808, 23016, -240, 1
Offset: 0
Triangle starts:
1;
0, 1;
0, -2, 1;
0, 12, -8, 1;
0, -144, 108, -20, 1;
0, 2880, -2304, 508, -40, 1;
...
n=3: [0,12,-8,1]. p(3,x) = x*(12-8*x+x^2) = x*(x-2)*(x-6).
n=5: [0,2880,-2304,508,-40,1]. p(5,x) = x*(2880-2304*x+508*x^2-40*x^3 +x^4) = x*(x-2)*(x-6)*(x-12)*(x-20).
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- G. E. Andrews, W. Gawronski, and L. L. Littlejohn, The Legendre-Stirling Numbers, Discrete Mathematics, Volume 311, Issue 14, 28 July 2011, Pages 1255-1272.
- M. Bruschi, F. Calogero and R. Droghei, Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials, J. Physics A, 40(2007), pp. 3815-3829.
- José L. Cereceda, A refinement of Lang's formula for the sum of powers of integers, arXiv:2301.02141 [math.NT], 2023.
- José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024. See p. 14.
- Mark W. Coffey and Matthew C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- Wolfdieter Lang, First ten rows and more.
-
f:= func< n,k | (&+[Binomial(2*k+j,j)*StirlingFirst(2*n,2*k+j)*n^j: j in [0..2*(n-k)]]) >;
function T(n,k) // T = A129467
if k eq n then return 1;
else return f(n,k) - (&+[Binomial(j,2*(j-k))*T(n,j): j in [k+1..n]]);
end if;
end function;
[[T(n,k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 09 2024
-
T[n_, k_, m_]:= T[n,k,m]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-m) -(m-1))*T[n-1,k,m] -((n-1)*(n-m-1))^2*T[n-2,k,m] +T[n-1,k-1,m]]]; (* T=A129467 *)
Table[T[n,k,n], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 09 2024 *)
-
@CachedFunction
def f(n,k): return sum(binomial(2*k+j,j)*(-1)^j*stirling_number1(2*n,2*k+j)*n^j for j in range(2*n-2*k+1))
def T(n,k): # T = A129467
if n==0: return 1
else: return - sum(binomial(j,2*j-2*k)*T(n,j) for j in range(k+1,n+1)) + f(n,k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 09 2024
A129065
Coefficients of the v=1 member of a family of certain orthogonal polynomials.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 12, 10, 1, 0, 144, 156, 28, 1, 0, 2880, 3696, 908, 60, 1, 0, 86400, 125280, 37896, 3508, 110, 1, 0, 3628800, 5780160, 2036592, 236472, 10528, 182, 1, 0, 203212800, 349090560, 138517632, 19022736, 1074176, 26600, 280, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 12, 10, 1;
0, 144, 156, 28, 1;
0, 2880, 3696, 908, 60, 1;
...
n=5,[0,2880,3696,908,60,1] stands for the polynomial x*(2880 + 3696*x + 908*x^2 + 60*x^3 + 1*x^4) with one zero 0 and some other four zeros.
Tridiagonal matrix V(5,1) = [[0,0,0,0,0], [1,-2,1,0,0], [0,4,-8,4,0], [0,0,9,-18,9], [0,0,0,16,-32]].
-
function T(n,k) // T = A129065
if k lt 0 or k gt n then return 0;
elif n eq 0 then return 1;
else return 2*(n-1)^2*T(n-1,k) - 4*Binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2024
-
nmax = 9; T[n_, m_] := T[n, m] = (-(n-2)^2)*(n-1)^2*T[n-2, m] + T[n-1, m-1] + 2*(n-1)^2*T[n-1, m]; T[n_, m_] /; n < m = 0; T[-1, ] = 0; T[0, 0] = 1; T[, -1] = 0; Flatten[Table[T[n, m], {n, 0, nmax}, {m, 0, n}]] (* Jean-François Alcover, Sep 26 2011, after recurrence *)
-
@CachedFunction
def T(n,k): # T = A129065
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return 2*(n-1)^2*T(n-1,k) - 4*binomial(n-1,2)^2*T(n-2,k) + T(n-1,k-1)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 07 2024
Showing 1-6 of 6 results.
Comments