A129111 Sums of three consecutive heptagonal numbers.
8, 26, 59, 107, 170, 248, 341, 449, 572, 710, 863, 1031, 1214, 1412, 1625, 1853, 2096, 2354, 2627, 2915, 3218, 3536, 3869, 4217, 4580, 4958, 5351, 5759, 6182, 6620, 7073, 7541, 8024, 8522, 9035, 9563, 10106, 10664, 11237, 11825, 12428, 13046, 13679, 14327, 14990
Offset: 0
Examples
a(0) = Hep(0) + Hep(1) + Hep(2) = 0 + 1 + 7 = 8 = (15/2)*0^2 + (21/2)*0 + 8. a(1) = Hep(1) + Hep(2) + Hep(3) = 1 + 7 + 18 = 26 = (15/2)*1^2 + (21/2)*1 + 8. a(2) = Hep(2) + Hep(3) + Hep(4) = 7 + 18 + 34 = 59 = (15/2)*2^2 + (21/2)*2 + 8.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[8,26,59]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
-
Mathematica
LinearRecurrence[{3,-3,1},{8,26,59},50] (* Vincenzo Librandi, Feb 12 2012 *)
-
PARI
a(n)=3*n*(5*n+7)/2+8 \\ Charles R Greathouse IV, Jun 17 2017
-
Python
def a(n): return 3*n*(5*n+7)//2 + 8 print([a(n) for n in range(44)]) # Michael S. Branicky, Aug 26 2021
Formula
a(n) = Hep(n) + Hep(n+1) + Hep(n+2) where Hep(n) = A000566(n) = n*(5*n-3)/2.
a(n) = (15/2)*n^2 + (21/2)*n + 8.
From Colin Barker, Feb 20 2012: (Start)
G.f.: (8 + 2*x + 5*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(16 + 36*x + 15*x^2)/2. - Elmo R. Oliveira, Nov 16 2024
Comments