cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129113 Expansion of x^3 / (1 - x - 5*x^2 - x^3 + x^4).

Original entry on oeis.org

0, 0, 0, 1, 1, 6, 12, 42, 107, 323, 888, 2568, 7224, 20629, 58429, 166230, 471780, 1340730, 3807431, 10816631, 30722736, 87272592, 247895472, 704164537, 2000191753, 5681637318, 16138865148, 45843078954, 130218850259
Offset: 0

Views

Author

Roger L. Bagula, Jun 07 2007

Keywords

Crossrefs

Cf. A005178.

Programs

  • Mathematica
    f[1] = f[2] = f[3] = 0; f[4] = 1; f[n_] := f[n] = f[n - 1] + 5f[n - 2] + f[n - 3] - f[n - 4]; Array[f, 29] (* or *) LinearRecurrence[{1, 5, 1, -1}, {0, 0, 0, 1}, 29] (* or *) gf = x^3/(1 - x - 5 x^2 - x^3 + x^4); CoefficientList[ Series[gf, {x, 0, 28}], x]
  • PARI
    concat(vector(3), Vec(x^3/(1-x-5*x^2-x^3+x^4) + O(x^30))) \\ Michel Marcus, Nov 19 2017

Formula

a(n) = a(n - 1) + 5*a(n - 2) + a(n - 3) - a(n - 4).
a(n) = ((-b + c - e - g + i)*(1 + s + k)^n + (b + d - f + h - j)*(1 - s + l)^n + (b - d + f - h + j)*(1 - s - l)^n + (-b - c + e + g - i)*(1 + s - k)^n)/(5800*4^n), with b = 100*s, c = 1015*k, d = 145*sqrt(10*(7 + s)), e = 245*sqrt(58*(7 + s)), f = 75*sqrt(290*(7 + s)), g = 1914*sqrt(119 + 22*s), h = 98*sqrt(145*(119 + 22*s)), i = 382*sqrt(3451 + 638*s), j = 406*sqrt(595 + 110*s), k = sqrt(2*(7 + s)), l = sqrt(2*(7 - s)), s = sqrt(29). - Tim Monahan, Sep 09 2011; modified by Robert G. Wilson v, Sep 26 2011